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Preface

Welcome to the R Labs page for ESCP 8082: Foundations of Educational and Psychological
Measurement (University of Missouri). Although these labs were created for use in a
classroom setting, they are available to all who happen to ΋nd them and ΋nd use in them.
Please don’t hesitate to let me know about any bugs or errors you notice, by contacting
me at sdwinter@missouri.edu

You can also download a PDF version of these R Labs. At the start of each speci΋c R lab,
you will also ΋nd a link to download just the R ΋le with all the code used in the lab.
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1 Getting Started

Before you can successfully complete the R Labs included on this page, you will need to
install some software and some packages within that software. This ΋rst Lab will help
you do so.

1.1 Installing New Software

As the title of this page suggests, all labs will be done using R (and RStudio). To use these
programs, you’ll need to install both R and RStudio. Follow the instructions below to
install them.

1.1.1 Step 1: Install R

R is a programming language and computing environment specialized for statistical anal-
ysis and data manipulation. It’s commonly used for performing statistical tests, creating
data visualizations, and writing data analysis reports.

Installing R for Windows Computers

Go to https://cloud.r-project.org/bin/windows/base/ and click the link titled Download
R-4.3.2 for Windows (note: the version number might be diΊerent, but the remainder of
the link will be the same). This will download the R Installer into your Downloads folder,
where you can double click on it and follow the prompts on the screen to ΋nish installing
R. You can accepts all default settings.

Installing R for Mac Computers

You will need to ΋gure out if you have an Intel Processor or an Apple M Processor. You
can do so by clicking on the Apple icon in the top-left corner of your screen and clicking on
About this Mac. The window that will pop up will show you an overview of your computer,
including the processor/chip used.
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Once you know what processor your computer has, go to https://cloud.r-project.org/bin/
macosx/, and:

• If your computer has an Intel Processor, click on the ΋le titled R-4.3.2-x86_64.pkg
• If your computer has anAppleMProcessor, click on the ΋le titledR-4.3.2-arm64.pkg

Note: the version number might be diΊerent, but the remainder of the link will be the
same. This will download the R Installer into your Downloads folder, where you can dou-
ble click on it and follow the prompts on the screen to ΋nish installing R. You can accepts
all default settings.

Installing R for Linux Computers

If you are using a Linux-based operating system, use your system’s package manager to
install R. For example, here are the instructions for installing R on Ubuntu.

Note

R cannot be installed on Chromebooks, so you’ll need to use the computers available
in the classroom/computer labs.

1.1.2 Step 2: Install RStudio

RStudio is an integrated development environment (IDE) for reproducible scienti΋c com-
puting that is developed for the R programming language. An IDE is basically a nicer-
looking user interface that can be customized to suit the preferences of the user. This is
the actual program that we will use in class!

• Download the latest, free version of RStudio Desktop. Be sure to get the version
that is appropriate for your operating system.

• Install RStudio Desktop by launching the installer after it downloads. You can accept
all the defaults during installation.

Tip

For more detailed instructions for downloading and installing R and RStudio, you
can watch this video tutorial on YouTube. To learn about (or review) R basics, you
can skim this (free!) book by Navarro (2015): Learning Statistics with R. There is also
the SWIRL Interactive R Tutorial that lets you learn about the basics of R while using
R.

7

https://cloud.r-project.org/bin/macosx/
https://cloud.r-project.org/bin/macosx/
https://cloud.r-project.org/bin/linux/ubuntu/
https://posit.co/download/rstudio-desktop/#download
https://www.youtube.com/watch?v=FIrsOBy5k58&ab_channel=HRanalytics101.com
https://learningstatisticswithr.com/book/
https://learningstatisticswithr.com/book/


1.2 Install Necessary Packages

Throughout these labs, we will rely on a set of R packages, which add functionality to the
base R language (like expansion sets of a game). These packages are typically available
through CRAN or GitHub. You only need to install packages once (but you may need to
update them!), so lets do that now.

We will start with a set of packages that we can download from CRAN, using the built-in
install.packages function:

install.packages(c("rio", "ggplot2", "psych","correlation",
"GPArotation", "lavaan", "MBESS",
"devtools"))

Running the code above will install:

1. rio: makes importing lots of diΊerent data ΋le types easy.
2. ggplot2: a versatile visualization package.
3. psych: will help us cover topics such as exploratory factor analysis and reliability.
4. correlation: includes fancy correlation coe΋cients
5. GPArotation: helps with exploratory factor analysis
6. lavaan: the main structural equation modeling package we will use to cover con΋r-

matory factor analysis and measurement invariance.
7. MBESS: includes additional internal consistency measures
8. devtools: a package that helps us install packages that are available on GitHub.

Tip

If you experience issues installing the MBESS package on macOS, you likely need to
install a few additional tools. Go to this page to download and install those tools:
Compile Tools for macOS.

In addition to these main packages, R might also install additional packages that are
needed for these 8 packages to work (so-called dependents).

Next, you will install a package, semTools from GitHub. Due to a bug in the version of
this package on CRAN, we need to use the uno΍cial, development version of the package.
You may need to uncomment (remove the #) the ΋rst line of code and execute both lines
for this to work. In some cases, the download of the semTools package is too slow and
results in an error because the R session times out.
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# options(timeout = max(300, getOption("timeout")))
devtools::install_github("simsem/semTools/semTools")

1.3 Data Used in the R Labs

Several of the R Labs require you to download data ΋les to use for the analyses. Links
to these data ΋les are included within each lab, accompanied by an explanation and cita-
tion.

You are now ready to continue to the second R Lab, where you will learn all about corre-
lation coe΍cients.
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2 Correlations

Note

You can download the R code used in this lab by right-clicking this link and selecting
“Save Link As…” in the drop-down menu: correlations.R

2.1 Loading R Packages

If you want to use the functionality of a package, you will need to “load” the package into
your environment. To do that, we use the library function:

library(rio)
library(psych)
library(ggplot2)
library(correlation)

2.2 Loading Data

You can download the data by right-clicking this link and selecting “Save Link As…” in the
drop-down menu: data/tempice.csv. Make sure to save it in the folder you are using for
this class.

Typically, you will import some data ΋le into your R environment for further analysis.
There are many ways of doing this. I will show you two:

1. You can use a point-and-click approach by clicking the Import Dataset button in
the right-top window.

2. You can use a function (the one we use is from the rio package).
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tempice <- import(file = "data/tempice.csv")

The function above will attempt to import the ΋le tempice.csv from a folder called data,
which is located inside your working directory.

Sometimes, running the code above doesn’t work because R thinks you want to import
the data from the wrong folder (which R calls the working directory). We can check what
the working directory is:

getwd()

If the result of this function is not the folder containing your data ΋le, then you can change
the working directory in two ways:

1. Use a point-and-click approach by moving your cursor to the bottom-right window
to navigate to the correct folder (in the Files tab).

2. Use the following R function to change the working directory:

# Mac OS:
setwd("~/Dropbox/Work/Teaching/Measurement/R Labs")

# Windows:
setwd("C:/Users/sonja/Dropbox/Work/Teaching/Measurement/R Labs")

# Note: the folder that you are using for this class will very
# likely be in a different location.

Typically, R/RStudio will set the working directory to the folder containing the R ΋le you
open. If you start RStudio by itself (instead of opening a ΋le), then the working directory
will typically be set to your home folder.

2.3 Basic R operations

Below are some basic operations that you can execute in R. First, you can use R as a fancy
calculator:

1 + 1

[1] 2
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5 / 3.21

[1] 1.557632

4*4

[1] 16

You can also save one or more values into an object (think of this as a variable) and then
do math with those objects:

x <- 10

y <- 5

x*y

[1] 50

There are several ways to store multiple values in one object, but the main method is
using a function you’ve already used before:

z <- c(1, 2, 3, 4)

z * x

[1] 10 20 30 40

The c() function can be used to create vectors, which contain values for a single variable
(here z). To access speci΋c values within an object, you can use []:

z[1]

[1] 1

12



z[1:3]

[1] 1 2 3

z[c(1,2,4)]

[1] 1 2 4

There are also objects called data frames. These look more like your SPSS data ΋les,
or Excel ΋les: big tables in which each row represents a case/person and each column
represents a variable. The data we imported above is in a data frame. We can access
several parts of the data frame using basic operations and functions:

# retrieve the value in the first row, first column
tempice[1,1]

[1] 67.56

# retrieve the first column
tempice[,1]

[1] 67.56 71.52 63.42 69.36 75.30 81.78 76.92 87.18 84.12 74.58 82.68 72.96

# retrieve the second column by using its column name
tempice$x2

[1] 215 325 185 332 406 522 412 614 544 421 445 408

# get some summary information about each column
summary(tempice)
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x1 x2
Min. :63.42 Min. :185.0
1st Qu.:70.98 1st Qu.:330.2
Median :74.94 Median :410.0
Mean :75.61 Mean :402.4
3rd Qu.:82.00 3rd Qu.:464.2
Max. :87.18 Max. :614.0

Throughout this course, you will learn additional operations you can use in R. This class
is not meant to be a complete introduction to the R language, so your knowledge of R will
be somewhat haphazard by the end of this class.

2.4 Visualizing Bivariate Associations

Now we can focus on the topic of this module: Correlation. We will start by produc-
ing a simple scatter plot to visualize the association between the two variables stored in
tempice:

# Create scatterplot of variables x1 and x2
plot(x = tempice$x1, y = tempice$x2,

xlab = "Temperature (F)",
ylab = "Ice cream sales ($)")
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We can also use the ggplot2 package to create a similar scatter plot:
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ggplot(tempice, aes(x = x1, y = x2)) +
geom_point() +
labs(x = "Temperature (F)",

y = "Ice cream sales ($)")
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2.5 Calculating Pearson’s r ‘by hand’

Next, we will go through the diΊerent computational steps to calculate Pearson’s r.

2.5.1 The data

tempice

x1 x2
1 67.56 215
2 71.52 325
3 63.42 185
4 69.36 332
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5 75.30 406
6 81.78 522
7 76.92 412
8 87.18 614
9 84.12 544
10 74.58 421
11 82.68 445
12 72.96 408

2.5.2 Variable x1 calculations

First, we need to compute the mean, variance, and standard deviation for x1.

# Mean:
x1bar <- (67.56 + 71.52 + 63.42 + 69.36 + 75.30 + 81.78 +

76.92 + 87.18 + 84.12 + 74.58 + 82.68 + 72.96) / 12

# Mean (less by hand):
x1bar_2 <- sum(tempice$x1) / nrow(tempice)

# The result is equivalent:
x1bar

[1] 75.615

x1bar_2

[1] 75.615

# Variance:
s2x1 <- ((67.56 - x1bar) ^ 2 +

(71.52 - x1bar) ^ 2 +
(63.42 - x1bar) ^ 2 +
(69.36 - x1bar) ^ 2 +
(75.30 - x1bar) ^ 2 +
(81.78 - x1bar) ^ 2 +
(76.92 - x1bar) ^ 2 +
(87.18 - x1bar) ^ 2 +
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(84.12 - x1bar) ^ 2 +
(74.58 - x1bar) ^ 2 +
(82.68 - x1bar) ^ 2 +
(72.96 - x1bar) ^ 2) / (12 - 1)

# Variance (less by hand):
s2x1_2 <- sum((tempice$x1 - x1bar)^2) / (nrow(tempice) - 1)

# Standard deviation:
sx1_2 <- sqrt(s2x1)
sx1_2

[1] 7.220069

# Getting these things by doing even less by hand:
x1bar <- mean(tempice$x1)
s2x1 <- var(tempice$x1)
sx1 <- sd(tempice$x1)
sx1

[1] 7.220069

2.5.3 Variable x2 calculations

Second, we need to compute the mean, variance, and standard deviation for x2. We will
just use the built-in functions this time:

# Same idea for variable x2:
x2bar <- mean(tempice$x2)
s2x2 <- var(tempice$x2)
sx2 <- sd(tempice$x2)

2.5.4 Sum of Cross-Products, Covarariance, and Correlation

Next, we have to combine these components together to ΋nnd thee sum of cross-
products:
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# Compute the sum of cross-products:
CP <- (tempice$x1 - x1bar) * (tempice$x2 - x2bar)
CP

[1] 1509.64125 317.02125 2651.39625 440.45625 -1.12875 737.23125
[7] 12.50625 2446.96125 1204.16625 -19.23375 300.85125 -14.82375

sumCP <- sum(CP)
sumCP

[1] 9585.045

Finally, with help from the sample size, n, we can compute the sample covariance and
(Pearson) correlation estimates:

# Sample size
n <- nrow(tempice)
n

[1] 12

# Covariance and correlation
covariance <- sumCP/(n - 1)
covariance

[1] 871.3677

correlation <- covariance/(sx1 * sx2)

# Are ice cream sales and temperature correlated?
correlation

[1] 0.9575066
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2.6 Using a function to calculate Pearson’s r

Luckily, R has some built-in functions that we can use to compute Pearson’s r:

cov(tempice$x1, tempice$x2)

[1] 871.3677

cor(tempice$x1, tempice$x2)

[1] 0.9575066

An even nicer option is to use a function that is part of the built-in stats package (this
means you don’t have to install or load it yourself), which provides a con΋dence interval
around the estimate:

cor.test(tempice$x1, tempice$x2)

Pearson's product-moment correlation

data: tempice$x1 and tempice$x2
t = 10.499, df = 10, p-value = 1.016e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8515370 0.9883148

sample estimates:
cor

0.9575066

2.7 Issues with Pearson’s r

To see how misleading Pearson’s r can be when data do not meet its assumptions, we’ll
look at a second data ΋le.
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You can download this data by right-clicking this link and selecting “Save Link As…” in the
drop-down menu: data/tempicecurve.csv. Again: Make sure to save it in the folder you
are using for this class.

You can import the data using a version of the code below, or using the point-and-click
method described above.

tempicecurve <- import(file = "data/tempicecurve.csv")

To get an idea of the problem with these data, we can visualize them in another scatter
plot:

plot(tempicecurve$x1, tempicecurve$x2, pch=19,
xlab = "Temperature (F)",
ylab = "Ice cream sales ($)",
ylim = c(0,800))
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Howwill the shape of the relationship between x1 and x2 aΊect the Pearson’s r correlation
estimate?

cor.test(tempicecurve$x1, tempicecurve$x2)

Pearson's product-moment correlation

data: tempicecurve$x1 and tempicecurve$x2
t = 0.0015808, df = 19, p-value = 0.9988

20

data/tempicecurve.csv


alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.4313917 0.4319818

sample estimates:
cor

0.0003626502

Theremight be an explanation for this kind of pattern. For example, itmay be that there is
a positive linear association up to a certain temperature after which the direction of the
association changes because people don’t want to leave their house to buy Ice Cream
anymore.

To visualize this hypothesis, we can use the group variable to change the color of point
below and above a vague temperature cutoΊ range:

plot(tempicecurve$x1,tempicecurve$x2,pch=19,
xlab = "Temperature (F)",
ylab = "Ice cream sales ($)",
ylim = c(0,800),
col = tempicecurve$group)
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We can look at the correlation for each subset of data separately:

# select only group = 1 (cooler to hot temps)
tempicecurve1 <- subset(tempicecurve, group == 1)
cor.test(tempicecurve1$x1, tempicecurve1$x2)
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Pearson's product-moment correlation

data: tempicecurve1$x1 and tempicecurve1$x2
t = 10.499, df = 10, p-value = 1.016e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8515370 0.9883148

sample estimates:
cor

0.9575066

# select only group = 2 (hot to hottest temps)
tempicecurve2 <- subset(tempicecurve, group == 2)
cor.test(tempicecurve2$x1, tempicecurve2$x2)

Pearson's product-moment correlation

data: tempicecurve2$x1 and tempicecurve2$x2
t = -6.2426, df = 7, p-value = 0.0004272
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.9834759 -0.6604377

sample estimates:
cor

-0.920721

What do the separate correlation estimates tell us about the likely association between
temperature and ice cream sales?

We can also use a non-parametric type of correlation, such as a distance correlation coef-
΋cient, to quantify the association between temperature and ice cream sales across the
full range of temperatures. This coe΍cient ranges betwen 0 and 1 (so not -1 and 1), with 0
indicating no association between the variables and 1 indicating a perfect (but potentially
non-linear) relationship between the variables. Thus, this value only tells you something
about the strength of the association. After you compute this correlation, you need to
use the scatter plot to describe the actual association.

cor_test(tempicecurve, "x1", "x2", method = "distance")
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Parameter1 | Parameter2 | r | 95% CI | t(188) | p
----------------------------------------------------------------
x1 | x2 | 0.14 | [-0.31, 0.54] | 2.01 | 0.023*

Observations: 21

2.8 Alternatives to Pearson’s r

In the above example, we were able to split the data in half to appropriately estimate two
Pearson’s r for two linear associations. But there are other alternative’s to Pearson’s r
that help with other challenges.

2.8.1 Correlation Estimate for Data with Outliers

Weneed to import somemore (fake) data, which you candownloadhere: data/SATscores_outlier.csv

SATscores_out <- rio::import("data/SATscores_outlier.csv")

This data frame contains two variables, verbal and quant, which reΌect 11 participants’
verbal and quantitative SAT scores.

Below is code for visualizing the SATscores_out data, which reveals that there is an
outlier.

hist(SATscores_out$verbal, xlab = "Verbal", main = "")
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hist(SATscores_out$quant, xlab = "Quant", main = "")
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We can compute the biweight andWinsorized correlation coe΍cients and compare those
to the Pearson correlation coe΍cient:

# Pearson
cor.test(SATscores_out$verbal, SATscores_out$quant)

Pearson's product-moment correlation

data: SATscores_out$verbal and SATscores_out$quant
t = 3.8095, df = 9, p-value = 0.004157
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3513338 0.9417011

sample estimates:
cor

0.7856319

# biweight
cor_test(SATscores_out, "verbal", "quant", method = "biweight")

Parameter1 | Parameter2 | r | 95% CI | t(9) | p
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-------------------------------------------------------------
verbal | quant | 0.37 | [-0.29, 0.79] | 1.20 | 0.260

Observations: 11

# Winsorized
cor_test(SATscores_out, "verbal", "quant", winsorize = TRUE)

Parameter1 | Parameter2 | r | 95% CI | t(9) | p
-------------------------------------------------------------
verbal | quant | 0.42 | [-0.24, 0.81] | 1.39 | 0.198

Observations: 11

How does the estimate of the correlation change across methods?

2.8.2 Correlation Estimate for Non-normal Data

Even without the outlier, the SAT scores distributions looked somewhat skewed. For this
example, we will remove the outlier and focus solely on the non-normality of the two
variables:

SATscores <- SATscores_out[1:10,]

Below is code to test if your variables are approximately Normally distributed. Remem-
ber, we’re testing the Null hypothesis that the data are similar to a Normal distribution.
If the p-value is < .05, we reject this Null hypothesis and have to conclude that the data
are probably not normally distributed.

# Shapiro Wilk test of normality.
shapiro.test(SATscores$verbal)

Shapiro-Wilk normality test

data: SATscores$verbal
W = 0.82541, p-value = 0.02945
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shapiro.test(SATscores$quant)

Shapiro-Wilk normality test

data: SATscores$quant
W = 0.82188, p-value = 0.02671

We can compare Spearman’s 𝜌 (Rho) and Kendall’s 𝜏 (Tau) to Pearson’s correlation coef-
΋cient:

# Pearson
cor.test(SATscores$verbal, SATscores$quant)

Pearson's product-moment correlation

data: SATscores$verbal and SATscores$quant
t = 1.6325, df = 8, p-value = 0.1412
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1893260 0.8591149

sample estimates:
cor

0.4998894

# Spearman (you can use cor.test or cor_test)
# cor.test(SATscores$verbal, SATscores$quant, method = "spearman")
cor_test(SATscores, "verbal", "quant", method = "spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p
--------------------------------------------------------------
verbal | quant | 0.67 | [0.05, 0.92] | 54.00 | 0.033*

Observations: 10
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# Kendall (you can use cor.test or cor_test)
#cor.test(SATscores$verbal, SATscores$quant, method = "kendall")
cor_test(SATscores, "verbal", "quant", method = "kendall")

Parameter1 | Parameter2 | tau | 95% CI | z | p
-------------------------------------------------------------
verbal | quant | 0.51 | [0.04, 0.80] | 2.06 | 0.040*

Observations: 10

How does the estimate of the correlation change across methods?

We can also compare the raw SAT data to the ranked SAT data to see that the correlation
estimate is equivalent when using Kendall/Spearman, but that it is diΊerent when using
Pearson.

We ΋rst create the rank-ordered variables:

SATscores_rank <- data.frame(verbal = rank(SATscores$verbal),
quant = rank(SATscores$quant))

Next, we look at the Pearson’s r when based on the raw or ranked data:

# Camparing Pearson correlation coefficients
# (now using the cor_test function)
cor_test(SATscores, "verbal", "quant", method = "pearson")

Parameter1 | Parameter2 | r | 95% CI | t(8) | p
-------------------------------------------------------------
verbal | quant | 0.50 | [-0.19, 0.86] | 1.63 | 0.141

Observations: 10

cor_test(SATscores_rank, "verbal", "quant", method = "pearson")

Parameter1 | Parameter2 | r | 95% CI | t(8) | p
-------------------------------------------------------------
verbal | quant | 0.67 | [0.07, 0.91] | 2.57 | 0.033*

Observations: 10
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Now compare those results to what happens when we use Spearman’s 𝑟ℎ𝑜 (Rho):

# Comparing Spearman correlation coefficients
cor_test(SATscores, "verbal", "quant", method = "spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p
--------------------------------------------------------------
verbal | quant | 0.67 | [0.05, 0.92] | 54.00 | 0.033*

Observations: 10

cor_test(SATscores_rank, "verbal", "quant", method = "spearman")

Parameter1 | Parameter2 | rho | 95% CI | S | p
--------------------------------------------------------------
verbal | quant | 0.67 | [0.05, 0.92] | 54.00 | 0.033*

Observations: 10

2.8.3 Correlation Estimate for (Ordinal) Categorical Data

For this example, we will import some ordinal data on quality of life (QoL) and health,
which you can download here: data/QoLHealth.csv

QoLHealth <- import("data/QoLHealth.csv")

The variables are imported as strings, so we need to tell R what the order of the possible
values is:

QoLHealth$health <- factor(QoLHealth$health, level = c("Poor", "Moderate","Good"), ordered = T)
QoLHealth$QoL <- factor(QoLHealth$QoL, level = c("Low", "Medium", "High"), ordered = T)

The cross-table below shows the categorical nature of these variables, where each only
takes on 3 values that may be ordinal but are not neccesarily equally spaced:

table(QoLHealth)
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QoL
health Low Medium High

Poor 58 52 1
Moderate 26 58 3
Good 8 12 9

We can use the polychoric correlation coe΍cient for the ordinal QoL and Health data
(here we use the correlation package):

cor_test(QoLHealth, "health", "QoL", method = "polychoric")

Parameter1 | Parameter2 | rho | 95% CI | t(225) | p
------------------------------------------------------------------
health | QoL | 0.42 | [0.31, 0.52] | 6.94 | < .001***

Observations: 227

There is also an option in the psych package to compute the polychoric correlation coef-
΋cient, which uses the cross-table as input:

polychoric(table(QoLHealth))

[1] "You seem to have a table, I will return just one correlation."

$rho
[1] 0.4198846

$objective
[1] 1.790876

$tau.row
Poor Moderate

-0.02760955 1.13707578

$tau.col
Low Medium

-0.2396873 1.5781226
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The nice thing about the psych functions is that they also return the threshold estimates
that represent the point on the underlying continuous distribution (e.g., the continuum
of health from poor to good) where someone is likely to change their answer from one
response category to the next.

2.9 Summary

In this R lab, you were introduced to a host of correlation coe΍cients, each of which are
appropriate for diΊerent variable types and distributions. Next time youwant to estimate
the correlation between two variables, take amomnt to consider is Pearson’s r is the best
choice or not.
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3 Confirmatory Factor Analysis

Note

You can download the R code used in this lab by right-clicking this link and selecting
“Save Link As…” in the drop-down menu: con΋rmatoryfactoranalysis.R

3.1 Loading R Packages

Remember, you only need to install a package once. But if you want to use the function-
ality of a package, you will need to “load” the package into your environment. To do that
for lavaan (and the semTools and psych packages, which we’ll also use in this lab), we use
the library() function:

library(lavaan)
library(semTools)
library(psych)

3.2 Loading data into our environment

Typically, you will load your own data into your environment, like we did in the Corre-
lations lab. However, you can also use datasets that are included with R packages. To
access those datasets, you can use the data() function:

data("HolzingerSwineford1939")

If you look at your environment tab, you should see a new data frame called
HolzingerSwineford1939. We can take a look at the variables this dataframe
using the describe() function that is part of the psych package:
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describe(HolzingerSwineford1939)

vars n mean sd median trimmed mad min max range skew
id 1 301 176.55 105.94 163.00 176.78 140.85 1.00 351.00 350.00 -0.01
sex 2 301 1.51 0.50 2.00 1.52 0.00 1.00 2.00 1.00 -0.06
ageyr 3 301 13.00 1.05 13.00 12.89 1.48 11.00 16.00 5.00 0.69
agemo 4 301 5.38 3.45 5.00 5.32 4.45 0.00 11.00 11.00 0.09
school* 5 301 1.52 0.50 2.00 1.52 0.00 1.00 2.00 1.00 -0.07
grade 6 300 7.48 0.50 7.00 7.47 0.00 7.00 8.00 1.00 0.09
x1 7 301 4.94 1.17 5.00 4.96 1.24 0.67 8.50 7.83 -0.25
x2 8 301 6.09 1.18 6.00 6.02 1.11 2.25 9.25 7.00 0.47
x3 9 301 2.25 1.13 2.12 2.20 1.30 0.25 4.50 4.25 0.38
x4 10 301 3.06 1.16 3.00 3.02 0.99 0.00 6.33 6.33 0.27
x5 11 301 4.34 1.29 4.50 4.40 1.48 1.00 7.00 6.00 -0.35
x6 12 301 2.19 1.10 2.00 2.09 1.06 0.14 6.14 6.00 0.86
x7 13 301 4.19 1.09 4.09 4.16 1.10 1.30 7.43 6.13 0.25
x8 14 301 5.53 1.01 5.50 5.49 0.96 3.05 10.00 6.95 0.53
x9 15 301 5.37 1.01 5.42 5.37 0.99 2.78 9.25 6.47 0.20

kurtosis se
id -1.36 6.11
sex -2.00 0.03
ageyr 0.20 0.06
agemo -1.22 0.20
school* -2.00 0.03
grade -2.00 0.03
x1 0.31 0.07
x2 0.33 0.07
x3 -0.91 0.07
x4 0.08 0.07
x5 -0.55 0.07
x6 0.82 0.06
x7 -0.31 0.06
x8 1.17 0.06
x9 0.29 0.06

You can also learn more about these built-in datasets by going to its help page:

?HolzingerSwineford1939
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3.3 CFA Step 1: Model Specification

To specify a model in lavaan, we have to write it out in lavaan syntax and assign it to
an object (here called HSmodel). Basic syntax for a CFA follows this template:

factorname =~ indicator1 + indicator2 + indicator3
In our model, we have three factors (visual, textual, and speed) that each load onto three
items (e.g., for visual: x1, x2, and x3). You don’t have to specify that factors are hypothe-
sized to be correlated, lavaan does this automatically (scroll down for an example of a
CFA in which we specify that the factors should not be correlated).

#CFA model specification
HSmodel <- "visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9"

3.4 CFA Step 2: Model Estimation

Next, we need to estimate themodel, using our data. In our lecture, wewent over the four
phases of estimation, but in R, model estimation simpli΋es to using the cfa() function
with our model syntax and data arguments:

fit1 <- cfa(model = HSmodel,
data = HolzingerSwineford1939)

3.5 CFA Step 3: Interpreting Model Fit and Parameter Estimates

There are several ways of extracting the model ΋t and parameter estimates from our ΋t-
ted lavaanmodel (called fit1). The most typical way to look at this output is by using the
summary() function. Within this function, we can ask for some extra output (΋tmeasures,
standardized estimate, R-squares):

summary(fit1,
fit.measures = TRUE,
standardized = TRUE,
rsquare = TRUE)
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lavaan 0.6.17 ended normally after 35 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 21

Number of observations 301

Model Test User Model:

Test statistic 85.306
Degrees of freedom 24
P-value (Chi-square) 0.000

Model Test Baseline Model:

Test statistic 918.852
Degrees of freedom 36
P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 0.931
Tucker-Lewis Index (TLI) 0.896

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -3737.745
Loglikelihood unrestricted model (H1) -3695.092

Akaike (AIC) 7517.490
Bayesian (BIC) 7595.339
Sample-size adjusted Bayesian (SABIC) 7528.739

Root Mean Square Error of Approximation:

RMSEA 0.092
90 Percent confidence interval - lower 0.071
90 Percent confidence interval - upper 0.114
P-value H_0: RMSEA <= 0.050 0.001
P-value H_0: RMSEA >= 0.080 0.840

Standardized Root Mean Square Residual:
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SRMR 0.065

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~
x1 1.000 0.900 0.772
x2 0.554 0.100 5.554 0.000 0.498 0.424
x3 0.729 0.109 6.685 0.000 0.656 0.581

textual =~
x4 1.000 0.990 0.852
x5 1.113 0.065 17.014 0.000 1.102 0.855
x6 0.926 0.055 16.703 0.000 0.917 0.838

speed =~
x7 1.000 0.619 0.570
x8 1.180 0.165 7.152 0.000 0.731 0.723
x9 1.082 0.151 7.155 0.000 0.670 0.665

Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual ~~
textual 0.408 0.074 5.552 0.000 0.459 0.459
speed 0.262 0.056 4.660 0.000 0.471 0.471

textual ~~
speed 0.173 0.049 3.518 0.000 0.283 0.283

Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.549 0.114 4.833 0.000 0.549 0.404

.x2 1.134 0.102 11.146 0.000 1.134 0.821

.x3 0.844 0.091 9.317 0.000 0.844 0.662

.x4 0.371 0.048 7.779 0.000 0.371 0.275

.x5 0.446 0.058 7.642 0.000 0.446 0.269

.x6 0.356 0.043 8.277 0.000 0.356 0.298

.x7 0.799 0.081 9.823 0.000 0.799 0.676

.x8 0.488 0.074 6.573 0.000 0.488 0.477

.x9 0.566 0.071 8.003 0.000 0.566 0.558
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visual 0.809 0.145 5.564 0.000 1.000 1.000
textual 0.979 0.112 8.737 0.000 1.000 1.000
speed 0.384 0.086 4.451 0.000 1.000 1.000

R-Square:
Estimate

x1 0.596
x2 0.179
x3 0.338
x4 0.725
x5 0.731
x6 0.702
x7 0.324
x8 0.523
x9 0.442

3.5.1 Model Fit

The output above is great, but it can be a lot. To look at just the ΋t indices, you can also
use fitMeasures(). This function will return a ton of ΋t indices if you do not include the
fit.measures argument. Here, we select the main indices that we’re interested in:

fitMeasures(fit1,
fit.measures = c("chisq", "df", "pvalue",

"cfi", "rmsea", "rmsea.ci.lower",
"rmsea.ci.upper", "srmr"))

chisq df pvalue cfi rmsea
85.306 24.000 0.000 0.931 0.092

rmsea.ci.lower rmsea.ci.upper srmr
0.071 0.114 0.065

We can include output = "text" to make the output look a little bit nicer (more like the
summary output above):

fitMeasures(fit1,
fit.measures = c("chisq", "df", "pvalue",

"cfi", "rmsea", "rmsea.ci.lower",
"rmsea.ci.upper", "srmr"),

output = "text")
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Model Test User Model:

Test statistic 85.306
Degrees of freedom 24
P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 0.931

Root Mean Square Error of Approximation:

RMSEA 0.092
Confidence interval - lower 0.071
Confidence interval - upper 0.114

Standardized Root Mean Square Residual:

SRMR 0.065

Based on all ΋t indices, the ΋t of this CFA is poor. First, the Chi-square statistic is sig-
ni΋cant, indicating poor ΋t. Sometimes, with larger sample sizes, a signi΋cant Chi-square
simplymeans that there are a lot of small, trivial misspeci΋cations. However, if we look at
the CFI, TLI, RMSEA, and SRMR values and compare them to their suggested cutoΊ values
(.95, .95, .06, .08), they also indicate that the model ΋ts the data poorly.

3.5.2 Parameter Estimates

There is also a function we can use to extract just the standardized estimates,
standardizedSolution(). Within this function, we can specify that some of the
output (z-statistics and p-values) are left out. Typically, signi΋cance of parameter
estimates is evaluated using the unstandardized solution (which we saw above with
the summary() function), so we should not focus on signi΋cance of the standardized
estimates. Again, we can include output = "text" to get output that is easier to
read:

standardizedSolution(fit1,
zstat = FALSE, pvalue = FALSE,
output = "text")
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Latent Variables:
est.std Std.Err ci.lower ci.upper

visual =~
x1 0.772 0.055 0.664 0.880
x2 0.424 0.060 0.307 0.540
x3 0.581 0.055 0.473 0.689

textual =~
x4 0.852 0.023 0.807 0.896
x5 0.855 0.022 0.811 0.899
x6 0.838 0.023 0.792 0.884

speed =~
x7 0.570 0.053 0.465 0.674
x8 0.723 0.051 0.624 0.822
x9 0.665 0.051 0.565 0.765

Covariances:
est.std Std.Err ci.lower ci.upper

visual ~~
textual 0.459 0.064 0.334 0.584
speed 0.471 0.073 0.328 0.613

textual ~~
speed 0.283 0.069 0.148 0.418

Variances:
est.std Std.Err ci.lower ci.upper

.x1 0.404 0.085 0.238 0.571

.x2 0.821 0.051 0.722 0.920

.x3 0.662 0.064 0.537 0.788

.x4 0.275 0.038 0.200 0.350

.x5 0.269 0.038 0.194 0.344

.x6 0.298 0.039 0.221 0.374

.x7 0.676 0.061 0.557 0.794

.x8 0.477 0.073 0.334 0.620

.x9 0.558 0.068 0.425 0.691
visual 1.000 1.000 1.000
textual 1.000 1.000 1.000
speed 1.000 1.000 1.000
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3.6 CFA Step 4: Making Model Adjustments

Our model did not ΋t our data very well, so we may want to make some adjustments
to our model. Remember, there are always ways to make a model ΋t better (adding
parameters), but if they are not informed and justi΋ed by theory then we end up with a
model that will only ΋t our data (like the out΋ts made speci΋cally for Taylor Swift during
her Eras tour) and will not generalize to new samples (which is bad!).

We can use a function to help us identify the parameters that, when added, will result in
the largest improvements in model ΋t (in terms of a reduction in the model Chi-square
statistic), the modindices() function (which stands formodi΋cation indices). In the code
below, we ask that only parameters with relatively largemodi΋cation indices (10 or above)
are returned, and we ask that the output is sorted from largest improvement to smallest
improvement.

modindices(fit1, minimum.value = 10, sort = TRUE)

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
30 visual =~ x9 36.411 0.577 0.519 0.515 0.515
76 x7 ~~ x8 34.145 0.536 0.536 0.859 0.859
28 visual =~ x7 18.631 -0.422 -0.380 -0.349 -0.349
78 x8 ~~ x9 14.946 -0.423 -0.423 -0.805 -0.805

3.6.1 Model Re-Specification

We can use the information from the modi΋cation indices to re-specify our model. The
largest index is for adding a factor loading that goes from the visual factor to x9 (mi =
36.41), which is “Speeded discrimination straight and curved capitals”. From the descrip-
tion of x9, we can see that this test does involve visual ability as well, so I feel that we can
justify this modi΋cation. This means that the item x9 now loads onto two factors. The
second loading is also called a cross loading. By adding this cross loading, we’re making
the interpretation of the visual and speed factors more complex.

#Reanalysis
HSmodel2 <- "visual =~ x1 + x2 + x3 + x9

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9"
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3.6.2 Model Estimation

Again, model estimation is straightforward:

fit2 <- cfa(model = HSmodel2,
data = HolzingerSwineford1939)

3.6.3 Model Fit and Parameter Interpretation

We can look at the model ΋t and parameter estimates of this new model.

summary(fit2,
fit.measures = TRUE,
standardized = TRUE,
rsquare = TRUE)

lavaan 0.6.17 ended normally after 34 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 22

Number of observations 301

Model Test User Model:

Test statistic 52.382
Degrees of freedom 23
P-value (Chi-square) 0.000

Model Test Baseline Model:

Test statistic 918.852
Degrees of freedom 36
P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 0.967
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Tucker-Lewis Index (TLI) 0.948

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -3721.283
Loglikelihood unrestricted model (H1) -3695.092

Akaike (AIC) 7486.566
Bayesian (BIC) 7568.123
Sample-size adjusted Bayesian (SABIC) 7498.351

Root Mean Square Error of Approximation:

RMSEA 0.065
90 Percent confidence interval - lower 0.042
90 Percent confidence interval - upper 0.089
P-value H_0: RMSEA <= 0.050 0.133
P-value H_0: RMSEA >= 0.080 0.158

Standardized Root Mean Square Residual:

SRMR 0.045

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual =~
x1 1.000 0.885 0.759
x2 0.578 0.098 5.918 0.000 0.511 0.435
x3 0.754 0.103 7.291 0.000 0.667 0.590
x9 0.437 0.081 5.367 0.000 0.387 0.384

textual =~
x4 1.000 0.989 0.851
x5 1.115 0.066 17.016 0.000 1.103 0.856
x6 0.926 0.056 16.685 0.000 0.916 0.838

speed =~
x7 1.000 0.666 0.612
x8 1.207 0.185 6.540 0.000 0.804 0.795
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x9 0.675 0.112 6.037 0.000 0.450 0.447

Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

visual ~~
textual 0.396 0.072 5.506 0.000 0.453 0.453
speed 0.177 0.055 3.239 0.001 0.301 0.301

textual ~~
speed 0.136 0.051 2.675 0.007 0.206 0.206

Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.x1 0.576 0.100 5.731 0.000 0.576 0.424

.x2 1.120 0.100 11.153 0.000 1.120 0.811

.x3 0.830 0.087 9.515 0.000 0.830 0.651

.x9 0.558 0.060 9.336 0.000 0.558 0.550

.x4 0.373 0.048 7.800 0.000 0.373 0.276

.x5 0.444 0.058 7.602 0.000 0.444 0.267

.x6 0.357 0.043 8.285 0.000 0.357 0.298

.x7 0.740 0.086 8.595 0.000 0.740 0.625

.x8 0.375 0.094 3.973 0.000 0.375 0.367
visual 0.783 0.134 5.842 0.000 1.000 1.000
textual 0.978 0.112 8.728 0.000 1.000 1.000
speed 0.444 0.097 4.567 0.000 1.000 1.000

R-Square:
Estimate

x1 0.576
x2 0.189
x3 0.349
x9 0.450
x4 0.724
x5 0.733
x6 0.702
x7 0.375
x8 0.633

But how do we know if this model is better (in terms of ΋tting our data) than the original
CFA?
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3.7 Comparing Multiple Models to Each Other

To compare the ΋t of the two models, we can use the compareFit() function:

comp_fit1_fit2 <- compareFit(fit1, fit2)
summary(comp_fit1_fit2)

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
fit2 23 7486.6 7568.1 52.382
fit1 24 7517.5 7595.3 85.305 32.923 0.32567 1 9.586e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

fit2 52.382† 23 .000 .065† .967† .948† .045† 7486.566† 7568.123†
fit1 85.306 24 .000 .092 .931 .896 .065 7517.490 7595.339

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

fit1 - fit2 1 0.027 -0.036 -0.052 0.02 30.923 27.216

The output of this function includes a comparison of ΋t based on the model Chi-square:
the Chi-square diΊerence test. If this test is signi΋cant, then it means that the model
with fewer estimated parameters (here fit1) ΋ts the data signi΋cantly worse than the
model with more estimated parameters (here fit2), so we should select the model with
more parameters (fit2). If this test is not signi΋cant, then it means that the additional
parameters of fit2 did not improve ΋t enough to result in a better model ΋t than that
of fit1, which means that we should stick with the simpler model (fit1). What do the
results above tell us?

The output also includes comparisons of the relative ΋t indices (AIC and BIC). Remember:
lower values indicate better ΋t. Finally, the output also includes comparisons of other ΋t
indices (e.g., CFI, RMSEA). These are sometimes also used to compare the ΋t of several
models. However, there are no clear, universal guidelines on how diΊerent these indices
need to be before they indicate an improvement/worsening in model ΋t.
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3.8 How to specify different types of CFAs

Here is an example of how to specify a hierarchical CFA, where the three factors are
indicator of a higher-order ability factor:

HSmodel3 <- "visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

ability =~ visual + textual + speed"

Here is an example of a CFA in which the factors are speci΋ed to be uncorrelated with
each other:

HSmodel4 <- "visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

visual ~~ 0*textual
visual ~~ 0*speed
textual ~~ 0*speed"

Factor correlations can be ΋xed to 0 (i.e., removed from the CFA) using the following
template:

factorname1 ~~ 0*factorname2
Here is an example of a CFA in which the factors are speci΋ed to be correlated but the
correlations are constrained to be equal (i.e., their parameter estimate is going to be the
exact same value):

HSmodel5 <- "visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

visual ~~ a*textual
visual ~~ a*speed
textual ~~ a* speed"

To constrain parameters to be equal, we can give them the same label (this is diΊerent
from the factor name that we use to specify/name latent factors). The general format for
these equality constraints is:
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factorname1 ~~ label*factorname2
Or for constraining factor loadings to be equivalent:

factorname1 =~ label*x1 + label*x2 + label*x3
Your label can be any text string (e.g., a, b, eq), but remember to use diΊerent labels for
diΊerent equality constraints. So, if you want to constrain your loadings and your factor
correlations, use the label a for the loadings and b for the correlations.

3.9 Summary

In this R lab, you learned how to specify, estimate, evaluate and interpret CFAs. In addi-
tion, you learned how to re-specify a CFA and compare the ΋t across several models to
select the best-΋tting model. Finally, you were introduced to some examples of alterna-
tive CFA con΋gurations, such as the higher-order CFA.
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4 Exploratory Factor Analysis

Note

You can download the R code used in this lab by right-clicking this link and selecting
“Save Link As…” in the drop-down menu: exploratoryfactoranalysis.R

4.1 Loading R Packages

Remember, you only need to install a package once. But if you want to use the function-
ality of a package, you will need to “load” the package into your environment. To do that
for lavaan (and the psych and GPArotation packages, which we’ll also use in this lab), we
use the library() function:

library(lavaan)
library(psych)
library(GPArotation)

4.2 Loading data into our environment

We’re using the same dataset as we used in the CFA R Lab, so we can use the data()
function like we did before:

data("HolzingerSwineford1939")

Remember that for the CFA analysis, we did not have to remove any variables from the
data frame, because lavaan extracted the relevant variables automatically. With EFA,
using the psych package, we have to do that extraction ourselves. We can do that as
follows:
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# print the variable names of the full data frame
# and locate the relevant variables
colnames(HolzingerSwineford1939)

[1] "id" "sex" "ageyr" "agemo" "school" "grade" "x1" "x2"
[9] "x3" "x4" "x5" "x6" "x7" "x8" "x9"

# use the [,] operator to select only the relevant
# columns/variables (here in column 7 to 15)
HSdata <- HolzingerSwineford1939[,7:15]

There are many other ways of selecting variables from a larger data frame, and if you
have a diΊerent method that you like better, feel free to use it!

4.3 EFA Step 1: How many factors should I extract?

In the ΋rst step of the EFA, wewill use parallel analysis to seewhat the algorithm identi΋es
as the optimal number of factors to extract from the data. This algorithm generates
randomcorrelationmatrices, andwhendoing so, itmay return an errormessage because
something went wrong with those random matrices. If this happens, you can simply re-
run the fa.parallel() function and the error should disappear.

The code below will return a parallel analysis for the Holzinger Swineford data using the
factor analysis method and based on 50 random correlation matrices. You can increase
that number to 100 or 1000 if you want to be more certain of the results, but note that
that will take longer to run.

fa.parallel(HSdata, fa = "fa", n.iter = 50)
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Parallel analysis suggests that the number of factors = 3 and the number of components = NA

Based on the plot, how many factors should we extract?

4.4 EFA Step 2: Factor Extraction and Rotation

In the ΋rst cycle of the EFA process, we will follow the parallel analysis results and es-
timate a 3-factor EFA. To estimate the parameters and rotate those results to be more
interpretable, we just need to use one function:

efa_3f <- fa(HSdata, nfactors = 3,
fm = "minres",
rotate = "oblimin")

Technically, you don’t even need to include fm = "minres", rotate = "oblimin", but
I wanted to show you what arguments you need to use if you want to change the default
estimation method (here “minres”) or if you want to change the default rotation method
(here “oblimin”).
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4.5 EFA Step 3: Interpreting the EFA estimates

4.5.1 Commmunalities

round(efa_3f$communalities,
digits = 3)

x1 x2 x3 x4 x5 x6 x7 x8 x9
0.477 0.255 0.453 0.728 0.754 0.691 0.519 0.520 0.460

Most communalities are between .4 and .6 (one even above .6), indicating that the factors
are able to account for a good chunk of the variability in the item responses. One excep-
tion is x2, which has a communality of .255. Overall, these values look acceptable.

4.5.2 Factor Loadings

It can be helpful to hide low factor loadings from your output to see if the factor extraction
and rotation has resulted in a simple structure. We can do that by including cutoff =
.3 in the print() function:

print(efa_3f$loadings,
cutoff = .3)

Loadings:
MR1 MR3 MR2

x1 0.592
x2 0.509
x3 0.686
x4 0.846
x5 0.886
x6 0.805
x7 0.737
x8 0.686
x9 0.382 0.456

MR1 MR3 MR2
SS loadings 2.197 1.275 1.239
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Proportion Var 0.244 0.142 0.138
Cumulative Var 0.244 0.386 0.523

The factor loadings appear to follow a pretty clear, simple structure. The exception is x9,
which has a factor loading > .3 on two factors.

This output also includes information about the variance in the items that is explained
by each factor. SS loadings refers to the sum of the squared loadings (i.e., the factor’s
Eigenvalue). The columns (even in the loadings table) are sorted from the highest Eigen-
value to the lowest. That’s why the order here is MR1, MR3, and thenMR2 (andMR refers
to the estimationmethod, minres). The second row shows the variance that is accounted
for by each factor, and the bottom row shows the cumulative variance accounted for by
all factors. Here, the three factors explain 52.3% of the variance in the items.

Note: if you want to see all the factor loading estimates, you need to set the cuttof at the
lowest possible value for factorloadings (-1):

print(efa_3f$loadings,
cutoff = -1)

Loadings:
MR1 MR3 MR2

x1 0.196 0.592 0.031
x2 0.043 0.509 -0.122
x3 -0.062 0.686 0.019
x4 0.846 0.016 0.008
x5 0.886 -0.065 0.007
x6 0.805 0.080 -0.013
x7 0.044 -0.152 0.737
x8 -0.034 0.125 0.686
x9 0.032 0.382 0.456

MR1 MR3 MR2
SS loadings 2.197 1.275 1.239
Proportion Var 0.244 0.142 0.138
Cumulative Var 0.244 0.386 0.523

4.5.3 Factor Correlations

Finally, we can look at the correlations between the factors:
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round(efa_3f$Phi,
digits = 3)

MR1 MR3 MR2
MR1 1.000 0.323 0.213
MR3 0.323 1.000 0.261
MR2 0.213 0.261 1.000

Extremely large correlations between factors may be an indication of overextraction; the
two factors could be combined into one factor. In this case, the correlations between the
factors are small tomoderate, indicating that they are tapping into distinct but correlated
subconstructs.

4.6 EFA Step 4: Comparing to other factor solutions

To understand if the three-factor model makes the most sense, it is typical to also esti-
mate an EFA with one factor less and one factor more to see if those analyses result in
more clearly interpretable results. Let’s start by estimating a two-factor EFA.

4.6.1 Two-Factor EFA

efa_2f <- fa(HSdata, nfactors = 2,
fm = "minres",
rotate = "oblimin")

4.6.2 Interpreting the results of the Two-Factor EFA

round(efa_2f$communalities,
digits = 3)

x1 x2 x3 x4 x5 x6 x7 x8 x9
0.341 0.100 0.223 0.728 0.708 0.705 0.179 0.381 0.545
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Many of the communalities are low, indicating that this factor solution does not do a good
job of accounting for variability in the items.

print(efa_2f$loadings,
cutoff = .3)

Loadings:
MR1 MR2

x1 0.430
x2
x3 0.449
x4 0.851
x5 0.854
x6 0.828
x7 0.434
x8 0.640
x9 0.736

MR1 MR2
SS loadings 2.244 1.588
Proportion Var 0.249 0.176
Cumulative Var 0.249 0.426

Although there are no cross-loadings, one item (x2) doesn’t have a loading > .3 on either
of the factors! These two factors cannot capture the variance in x2 that is common with
the other items.

round(efa_2f$Phi,
digits = 3)

MR1 MR2
MR1 1.00 0.34
MR2 0.34 1.00

The factor correlation does not indicate any issues.
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4.6.3 Four-Factor EFA

efa_4f <- fa(HSdata, nfactors = 4,
fm = "minres",
rotate = "oblimin")

Interpreting the results of the Four-Factor EFA

round(efa_4f$communalities,
digits = 3)

x1 x2 x3 x4 x5 x6 x7 x8 x9
0.454 0.230 0.554 0.740 0.787 0.687 0.995 0.424 0.568

Compared to the three-factor EFA, the communalities have not changed a lot, except for
the communality of x7, which is now awhopping .995. Such a high communality indicates
that there is a factor (or combination of factors) that can account for almost all variability
in x7. Although this may sound good, it may stand in the way of our goal of dimension
reduction (as we’ll see next).

print(efa_4f$loadings,
cutoff = .3)

Loadings:
MR1 MR2 MR3 MR4

x1 0.453
x2 0.397
x3 0.735
x4 0.850
x5 0.887
x6 0.804
x7 0.986
x8 0.499
x9 0.674

MR1 MR2 MR3 MR4
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SS loadings 2.216 1.089 0.954 0.787
Proportion Var 0.246 0.121 0.106 0.087
Cumulative Var 0.246 0.367 0.473 0.561

Whenasked to estimate four factors, the EFA algorithm resulted in a factor that only repre-
sents one item (x7). This one-to-one association gets in the way of our goal of dimension
reduction, and is an indication that this factor solution is not appropriate.

round(efa_4f$Phi, digits = 3)

MR1 MR2 MR3 MR4
MR1 1.000 0.122 0.250 0.286
MR2 0.122 1.000 0.046 0.417
MR3 0.250 0.046 1.000 0.436
MR4 0.286 0.417 0.436 1.000

Factor correlations indicate that there is no extremely strong correlation (𝑟 = .417) be-
tween the factor that represents x7 and the factor that represents x8 and x9 (these three
items are hypothesized to measure one subconstruct: speed). This indicates that, al-
though these three items share some common variance, they also tap into distinct sub-
subconstructs that may need to be explored further.

4.7 Some Final Conclusions

For this sample, a three-factor solution appeared to best balance dimension reduction
and representing the associations among the observed variables. However, the results
did indicate that there may be an issue with x2 (low communality) and x9 (cross loading).
In addition, the four-factor EFA seemed to indicate that the three itemsmeasuring speed
are not as related as we’d hoped they’d be. A second sample could indicate whether
these ΋ndings were due to sampling variability or whether they reΌect true issues that
need to be resolved.

4.8 Summary

In this R lab, you learned how to specify, estimate, evaluate and interpret EFAs. You also
learned how to evaluate diΊerent sources of information about the appropriateness of
the EFA solutions.
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5 Reliability

Note

You can download the R code used in this lab by right-clicking this link and selecting
“Save Link As…” in the drop-down menu: reliability.R

5.1 Loading R packages

In this lab we will be using a new package: MBESS (Methods for the Behavioral, Educa-
tional, and Social Sciences), which includes a function that calculates coe΍cient omega
and (more importantly) its con΋dence interval. Although other packages can also esti-
mate coe΍cient omega, they often do not provide a con΋dence interval. We will also use
the psych package. We can simply get those packages from the R package library:

library(psych)
library(MBESS)

5.2 Loading data into our environment

For this lab, we will use a dataset that is included in the psych package, so we can use
the data() function like we did before:

data("attitude")

These data come from a survey of clerical employees of a large ΋nancial organization.
Each variable represents a rating (on the percentage scale) of how well the company per-
forms on that item’s topic (e.g., complaints).

describe(attitude)
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vars n mean sd median trimmed mad min max range skew
rating 1 30 64.63 12.17 65.5 65.21 10.38 40 85 45 -0.36
complaints 2 30 66.60 13.31 65.0 67.08 14.83 37 90 53 -0.22
privileges 3 30 53.13 12.24 51.5 52.75 10.38 30 83 53 0.38
learning 4 30 56.37 11.74 56.5 56.58 14.83 34 75 41 -0.05
raises 5 30 64.63 10.40 63.5 64.50 11.12 43 88 45 0.20
critical 6 30 74.77 9.89 77.5 75.83 7.41 49 92 43 -0.87
advance 7 30 42.93 10.29 41.0 41.83 8.90 25 72 47 0.85

kurtosis se
rating -0.77 2.22
complaints -0.68 2.43
privileges -0.41 2.23
learning -1.22 2.14
raises -0.60 1.90
critical 0.17 1.81
advance 0.47 1.88

5.3 Are the items tau-equivalent?

When determining which internal consistency coe΍cient may be most appropriate for
ourmeasurement instrument, we can look atwhether the items are tau equivalent (equiv-
alent factor loadings for all items). A simple way to do so is the run a unidimensional EFA
and inspect the factor loadings:

fa(attitude)$loadings

Loadings:
MR1

rating 0.758
complaints 0.834
privileges 0.603
learning 0.789
raises 0.841
critical 0.284
advance 0.491

MR1
SS loadings 3.285
Proportion Var 0.469
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Based on the loadings, do you think the items are tau equivalent? What does this mean
for our choice of internal consistency coe΍cient?

5.4 Coefficient Omega

We will use the MBESS package to compute coe΍cient omega:

ci.reliability(attitude, type = "omega",
conf.level = 0.95,
interval.type = "mlr")

$est
[1] 0.8563268

$se
[1] 0.04619404

$ci.lower
[1] 0.7657882

$ci.upper
[1] 0.9468655

$conf.level
[1] 0.95

$type
[1] "omega"

$interval.type
[1] "robust maximum likelihood (wald ci)"

How internally consistent are the scores on this measurement instrument with this sam-
ple? Here is how you’d report the reliability: Internal consistency of the Attitudes survey
was good, 𝜔 = .86 (SE = .05), 95% CI = [.77, .95].

We can use the estimated internal consistency to get an estimate of the overall standard
error of measurement (sem):
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# compute the SD of the attitude sum scores
sd_x <- sd(rowSums(attitude))

# compute sem: sd_x * sqrt(1 - reliability)
sem <- sd_x * sqrt(1 - 0.8563268)
sem

[1] 21.88914

So, the average size of the error scores is 21.89.

5.5 Cronbach’s Alpha

We will use the psych package to compute Cronbach’s alpha.

attitude_alpha <- alpha(attitude)

Number of categories should be increased in order to count frequencies.

This function returns a bunch of output that we can look at, starting with some basic
summary statistics:

summary(attitude_alpha)

Reliability analysis
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r

0.84 0.84 0.88 0.43 5.2 0.042 60 8.2 0.45

We can also look at how Cronbach’s alpha would change if speci΋c items were removed
from the instrument. This can help us identify items that are measured with more mea-
surement error:

attitude_alpha$alpha.drop
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raw_alpha std.alpha G6(smc) average_r S/N alpha se
rating 0.8097602 0.8081915 0.8317701 0.4125442 4.213534 0.05244967
complaints 0.7969175 0.7956468 0.8201749 0.3935404 3.893487 0.05653049
privileges 0.8278478 0.8230879 0.8661986 0.4367533 4.652525 0.04757251
learning 0.8030310 0.7983665 0.8367262 0.3975597 3.959493 0.05429802
raises 0.7953866 0.7847196 0.8261984 0.3779228 3.645105 0.05558872
critical 0.8638723 0.8634716 0.8900481 0.5131641 6.324481 0.03839722
advance 0.8404649 0.8346265 0.8563876 0.4568621 5.046918 0.04287642

var.r med.r
rating 0.03484463 0.4454779
complaints 0.03454755 0.4261169
privileges 0.05381799 0.5316198
learning 0.04457495 0.3768830
raises 0.04790794 0.3432934
critical 0.03015342 0.5582882
advance 0.04811380 0.4933310

And ΋nally, we can ΋nd the 95% CI:

attitude_alpha$feldt

95% confidence boundaries (Feldt)
lower alpha upper
0.74 0.84 0.92

Here is how you’d report the internal consistency using Cronbach’s alpha: Internal con-
sistency of the Attitudes survey was good, 𝛼 = .84 (SE = .04), 95% CI = [.74, .92].

Note that you can also use the MBESS package to compute Cronbach’s alpha:

ci.reliability(attitude, type = "alpha",
conf.level = 0.95,
interval.type = "feldt")

$est
[1] 0.8431428

$se
[1] NA
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$ci.lower
[1] 0.7393757

$ci.upper
[1] 0.9157731

$conf.level
[1] 0.95

$type
[1] "alpha"

$interval.type
[1] "feldt"

5.6 Split-Half Reliability

We can also use the psych package to estimate the split-half reliability. This function
returns (among some other things) the minimum, maximum, and average split-half relia-
bility. Ideally, wewant those numbers to be close together and close to 1. If theminimum
and maximum are far apart, it indicates that only some speci΋c splits can be considered
essentially parallel.

splitHalf(attitude)

Split half reliabilities
Call: splitHalf(r = attitude)

Maximum split half reliability (lambda 4) = 0.89
Guttman lambda 6 = 0.88
Average split half reliability = 0.82
Guttman lambda 3 (alpha) = 0.84
Guttman lambda 2 = 0.85
Minimum split half reliability (beta) = 0.68
Average interitem r = 0.43 with median = 0.45
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5.7 Disattenuation of correlations

As discussed in class, when two measures are not perfectly reliable, then the correlation
between them will be biased, or attenuated (i.e., lower than it should be). In this part of
the lab, we’ll see this phenomenon in action.

First, we’ll split the attitude survey in two parts, so we can look at the correlation between
the two parts. In Assignment 6, you will do something similar, but for two diΊerent sur-
veys. However, you will still need to split the Assignment 6 data frame into two parts, so
the code below is still relevant.

# Split attitude data into two parts
# for demonstration
part1 <- attitude[,c(1:4)]
part2 <- attitude[,c(5:7)]

To compute a correlation between the two tests, we need to compute each participant’s
sumscore across the items. We can use a function called rowSums() to do this:

# Compute summed scores of
# each part using rowSums()
sumscore1 <- rowSums(part1)
sumscore2 <- rowSums(part2)

Now, we can compute the observed correlation of the summed scores:

# Compute correlation between summed scores
obscor <- cor(sumscore1,sumscore2)
obscor

[1] 0.5438004

But we already know from our earlier assessment above that the full attitude test is not
perfectly reliable. Now we also need to see if these two parts are perfectly reliable or not.
To decide between using Cronbach’s alpha and coe΍cient omega, we need to assess the
(lack of) tau equivalence of the two parts:

#examine tau equivalence
fa(part1)$loadings

61



Loadings:
MR1

rating 0.855
complaints 0.920
privileges 0.590
learning 0.713

MR1
SS loadings 2.434
Proportion Var 0.608

fa(part2)$loadings

Loadings:
MR1

raises 0.874
critical 0.431
advance 0.657

MR1
SS loadings 1.381
Proportion Var 0.460

These loadings do not look tau equivalent, so we will use coe΍cient omega to quantify
the internal consistency. This time, we’re using the $ operator to extract just the omega
estimate (est) from the ci.reliability() output:

#record omega reliability estimates of both parts
omega1 <- ci.reliability(part1)$est
omega2 <- ci.reliability(part2)$est

omega1

[1] 0.8615586

omega2
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[1] 0.7097988

The omegas above show that the two tests are not perfectly reliable, so it’s important to
disattenuate the observed correlation:

# Disattenuated correlation between tests
discor <- obscor / sqrt(omega1 * omega2)
discor

[1] 0.6953916

Note

A nice feature of CFA (or structural equation modeling more generally) is that corre-
lations between factors are disattenuated for (lack of) reliability, because the factors
only represent the true score part of the item’s variability, while the error vari-
ance is separated into the residual or error variance of the indicators.

5.8 Summary

In this R lab, you learned how to determine whether a set of items are tau-equivalent
and how to compute coe΍cient omega and Cronbach’s alpha to evaluate internal consis-
tency reliability. You also learned how to get the split-half reliability. Finally, you used the
dissatenuation formula to dissatenuate a correlation for measurement error.
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6 Measurement Invariance

Note

You can download the R code used in this lab by right-clicking this link and selecting
“Save Link As…” in the drop-down menu: measurementinvariance.R

6.1 Loading R packages

In this lab, wewill use the lavaan and semTools packages, which we have already installed
in earlier labs. So, we can simply get those packages from the R package library:

library(lavaan)
library(semTools)

6.2 Loading data into our environment

For this lab, we will use a dataset that contains 3811 item responses to 10 items about
΋nancial well-being. You can download the data by right-clicking this link and selecting
“Save Link As…” in the drop-down menu: data/΋nance.csv. Make sure to save it in the
folder you are using for this class.

finance <- read.csv("data/finance.csv")

We can look at the variables in the dataset using describe() from the psych package.
In addition to the 10 items, the dataset also includes a variable denoting whether a par-
ticipant worked in the public or private sector.

psych::describe(finance, skew = FALSE)

64

https://winterstat.github.io/escp8082_rlabs/data/measurementinvariance.R
https://winterstat.github.io/escp8082_rlabs/data/finance.csv


vars n mean sd median min max range se
item1 1 3811 2.89 1.23 3 1 5 4 0.02
item2 2 3811 3.09 1.10 3 1 5 4 0.02
item3 3 3811 2.69 1.19 3 1 5 4 0.02
item4 4 3811 3.15 1.04 3 1 5 4 0.02
item5 5 3811 2.87 1.24 3 1 5 4 0.02
item6 6 3811 3.25 1.13 3 1 5 4 0.02
item7 7 3811 2.48 1.19 2 1 5 4 0.02
item8 8 3811 3.27 1.25 3 1 5 4 0.02
item9 9 3811 2.22 1.14 2 1 5 4 0.02
item10 10 3811 2.83 1.13 3 1 5 4 0.02
sector* 11 3811 1.55 0.50 2 1 2 1 0.01

These items make up the Financial Well-Being scale, which was developed by the Con-
sumer Financial Protection Bureau (CFPB):

1. I could handle a major unexpected expense (P)
2. I am securing my ΋nancial future (P)
3. Because of my money situation, I will never have the things I want in life (N)
4. I can enjoy life because of the way I’m managing my money (P)
5. I am just getting by ΋nancially (N)
6. I am concerned that the money I have or will save won’t last (N)
7. Giving a gift would put a strain on my ΋nances for the month (N)
8. I have money left over at the end of the month (P)
9. I am behind with my ΋nances (N)
10. My ΋nances control my life (N)

The items measure positive (P) and negative (N) ΋nancial well-being.

6.3 The Theoretical Measurement Model

Next, we will set up the theoretical measurement model representing the hypothesized
internal structure of this measure. In this case, the construct of ΋nancial well-being is rep-
resented by two correlated sub-constructs: ΋nancial stability and ΋nancial instability.

# Two-factor CFA model
financemodel <- "positive =~ item1 + item2 + item4 + item8

negative =~ item3 + item5 + item6 + item7 + item9 + item10"
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6.4 Step 1: Configural Invariance

To testmeasurement invariance (MI), wewill use the lavaan package. First, wewill assess
con΋gural invariance, which we can do using the code below. The main diΊerence from
previous CFAs is that we now use the group = "sector" argument to denote which
variable in our data denotes what group a participant is a member of. In addition, we will
tell lavaan to scale the latent factors so they have amean of 0 and a standard deviation of
1, using the std.lv = TRUE argument (note that there are other methods for scaling the
latent variable, but going into those technical details is beyond the scope of this class):

# Configural model
config <- cfa(model = financemodel, data = finance,

std.lv = TRUE,
group = "sector")

To evaluate whether con΋gural invariance holds, we can look at the summary output. In
this case, I’m mostly interested in looking at the ΋t of the model to the data, so we will
use estimates = F to omit the parameter estimates from the summary output.

summary(config, fit.measures = T, estimates = F)

lavaan 0.6.17 ended normally after 27 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 62

Number of observations per group:
public 2110
private 1701

Model Test User Model:

Test statistic 875.170
Degrees of freedom 68
P-value (Chi-square) 0.000
Test statistic for each group:

public 465.024
private 410.146

Model Test Baseline Model:
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Test statistic 20856.369
Degrees of freedom 90
P-value 0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI) 0.961
Tucker-Lewis Index (TLI) 0.949

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -49649.240
Loglikelihood unrestricted model (H1) -49211.655

Akaike (AIC) 99422.480
Bayesian (BIC) 99809.711
Sample-size adjusted Bayesian (SABIC) 99612.704

Root Mean Square Error of Approximation:

RMSEA 0.079
90 Percent confidence interval - lower 0.074
90 Percent confidence interval - upper 0.084
P-value H_0: RMSEA <= 0.050 0.000
P-value H_0: RMSEA >= 0.080 0.359

Standardized Root Mean Square Residual:

SRMR 0.031

Overall, the ΋t of the model to the data, allowing all parameters to be freely estimated
across groups, is decent: CFI > .95, TLI = .95, RMSEA = .079, 95% CI [.074, .084] SRMR < .08.
Not ideal in terms of RMSEA, but otherwise okay. More importantly, this output shows
us what part of the overall Model Chi-square is stemming from each of the two groups
(under Test statistic for each group). If those two numbers are relatively equal,
then the model ΋ts about equally well to each group’s data. If you notice that the Chi-
square contribution is much larger for one group than the other, it is an indication that
you may not be able to conclude that there is con΋gural invariance. In this case, both
groups contribute about equally to the total Chi-square, indicating similar model-data ΋t
across groups.
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6.4.1 If configural invariance is not supported

If con΋gural invariance is not supported, then you can start your investigation by looking
at the estimates across each group to see if there are noticeable issues (e.g., a lot of low
factor loadings in one group). You can follow this investigation up by running separate
EFAs for each group, to examine what kind of factor structure emerges for each group.
The code below shows you how to start this investigation for this example dataset, but I
do not include the output to reduce the length of this (already lengthy) lab:

# Examine parameter estimates
summary(config)

# Split data is two
public <- subset(finance, sector == "public")
private <- subset(finance, sector == "private")

# Run parallel analysis for each group
# (can be followed up by full EFA examination)
library(psych)
fa.parallel(public[,1:10], fa = "fa")
fa.parallel(private[,1:10], fa = "fa")

6.5 Step 2: Metric Invariance

Next, we will estimate the metric invariance model. To do so, we again use the cfa()
function and specify our grouping variable and latent factor scale. In addition, we will
add group.equal = "loadings":

# Metric model
metric <- cfa(model = financemodel, data = finance,

group = "sector",
std.lv = TRUE,
group.equal = "loadings")

To see if the metric model ΋ts the data signi΋cantly worse than the con΋gural model, we
will use the compareFit() function from the semTools package:

summary(compareFit(config, metric))
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################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
config 68 99422 99810 875.17
metric 76 99417 99754 885.35 10.179 0.011957 8 0.2527

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

config 875.170† 68 .000 .079 .961† .949 .031† 99422.480 99809.711
metric 885.349 76 .000 .075† .961 .954† .033 99416.660† 99753.925†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

metric - config 8 -0.004 0 0.005 0.002 -5.821 -55.786

The null hypothesis that we’re testing is that the ΋t of the metric and con΋gural model is
equivalent (i.e., adding equality constraints to the loadings does not make the model ΋t
worse). Thus, if the p-value associated with the Chi-square diΊerence test is > .05, we can
retain that null hypothesis and conclude thatmetric invariance holds for these data. If the
p-value associated with the Chi-square diΊerence test is < .05, then we need to reject the
null hypothesis and conclude that the metric invariance model ΋t the data signi΋cantly
worse, and so metric invariance does not hold.

Note: If any loadings were found to be non-invariant (i.e., there is partial metric invari-
ance), then the intercepts of those items also need to be estimated freely across groups
in the next step. In other words, you start your investigation with a model that is already
partially invariant at the scalar level (see below how to run partial invariance models).

6.6 Step 3: Scalar Invariance

Next, we will evaluate if scalar invariance holds for our data. To do so, we simply add the
intercepts to the group.equal = c("loadings","intercepts") argument:

# Scalar model
scalar <- cfa(model = financemodel, data = finance,

group = "sector",
std.lv = TRUE,
group.equal = c("loadings","intercepts"))

69



Now, we compare the scalar model’s ΋t to the ΋t of the metric model, to see if adding the
equality constraints on the intercepts results in signi΋cantly worse ΋t:

summary(compareFit(metric, scalar))

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
metric 76 99417 99754 885.35
scalar 84 99453 99740 937.72 52.371 0.053951 8 1.427e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

metric 885.349† 76 .000 .075 .961† .954 .033† 99416.660† 99753.925
scalar 937.720 84 .000 .073† .959 .956† .034 99453.030 99740.330†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

scalar - metric 8 -0.002 -0.002 0.002 0.001 36.371 -13.595

From the Chi-square diΊerence test above, we can see that the scalar model ΋t the data
signi΋cantly worse than the metric model. This means that, at least for some items, the
expected response for those with an average (i.e., 0) score on the latent factor diΊers
across groups.

6.6.1 Step 3B: Partial Scalar Invariance

To easily get an overview of what equality constraints should be released to result in
the largest improvement in model ΋t, we can use the lavTestScore function from the
lavaan package:

# Adjust the model for partial invariance testing
lavTestScore(scalar)
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$test

total score test:

test X2 df p.value
1 score 62.622 20 0

$uni

univariate score tests:

lhs op rhs X2 df p.value
1 .p1. == .p36. 0.125 1 0.724
2 .p2. == .p37. 0.594 1 0.441
3 .p3. == .p38. 0.323 1 0.570
4 .p4. == .p39. 0.327 1 0.567
5 .p5. == .p40. 1.733 1 0.188
6 .p6. == .p41. 1.909 1 0.167
7 .p7. == .p42. 1.219 1 0.270
8 .p8. == .p43. 2.986 1 0.084
9 .p9. == .p44. 2.129 1 0.144
10 .p10. == .p45. 0.011 1 0.916
11 .p24. == .p59. 15.296 1 0.000
12 .p25. == .p60. 0.215 1 0.643
13 .p26. == .p61. 16.963 1 0.000
14 .p27. == .p62. 0.257 1 0.612
15 .p28. == .p63. 9.145 1 0.002
16 .p29. == .p64. 0.445 1 0.505
17 .p30. == .p65. 0.101 1 0.751
18 .p31. == .p66. 21.472 1 0.000
19 .p32. == .p67. 1.433 1 0.231
20 .p33. == .p68. 4.348 1 0.037

To ΋gure out what equality constraints map onto which item’s intercept, we can look at
the parameter table of the scalar model. In the code below, I ΋lter the output to only
include intercept parameters (op = "~1"), only show parameters from group 2 (group
== 2) and then to only include certain columns and rows of that output. This was mostly
done to keep this PDF from becoming too large. You don’t need to do any of this ΋ltering
yourself.

# To view the entire parameter table, simply use this code
# (remove the hashtag in front of the next line):
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# parTable(scalar)

# To filter the output (this literal code will only work for
# this example):
subset(parTable(scalar), op == "~1" & group == 2)[,c(1:4, 11:15)]

id lhs op rhs label plabel start est se
59 59 item1 ~1 .p24. .p59. 2.733 2.994 0.025
60 60 item2 ~1 .p25. .p60. 2.978 3.173 0.022
61 61 item4 ~1 .p26. .p61. 3.093 3.232 0.021
62 62 item8 ~1 .p27. .p62. 3.162 3.370 0.025
63 63 item3 ~1 .p28. .p63. 2.708 2.638 0.024
64 64 item5 ~1 .p29. .p64. 2.931 2.820 0.024
65 65 item6 ~1 .p30. .p65. 3.301 3.203 0.022
66 66 item7 ~1 .p31. .p66. 2.600 2.432 0.024
67 67 item9 ~1 .p32. .p67. 2.256 2.174 0.022
68 68 item10 ~1 .p33. .p68. 2.855 2.785 0.022
69 69 positive ~1 .p69. 0.000 -0.217 0.035
70 70 negative ~1 .p70. 0.000 0.121 0.035

In the table above, we can see the the intercept of Item 7 is associated with the largest
potential improvement in model ΋t. So, we estimate a partial scalar invariancemodel. To
release the equality constraint for the intercept of Item 7, we add the group.partial =
c("item7 ~ 1") argument. Once the model is estimated, we will compare its ΋t to the
metric model, to see if we need to release additional intercept parameters:

scalar2 <- cfa(model = financemodel, data = finance,
group = "sector",
std.lv = TRUE,
group.equal = c("loadings","intercepts"),
group.partial = c("item7 ~ 1"))

# for a loading, group.partial would look like: "negative =~ item7"

summary(compareFit(metric, scalar2))

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
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metric 76 99417 99754 885.35
scalar2 83 99434 99727 916.21 30.863 0.042297 7 6.59e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

metric 885.349† 76 .000 .075 .961† .954 .033† 99416.660† 99753.925
scalar2 916.212 83 .000 .073† .960 .956† .034 99433.523 99727.068†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

scalar2 - metric 7 -0.002 -0.001 0.003 0.001 16.863 -26.857

The ΋t of the ΋rst partial scalar model is still worse than the metric model. So, we need to
release additional equality constraints. After examining the modi΋cation indices again,
we release the equality constraint of Item 4’s intercept, estimate the model again, and
compare this second partial model to the metric model:

# Adjust the model for partial invariance testing
lavTestScore(scalar2)

$test

total score test:

test X2 df p.value
1 score 41.208 19 0.002

$uni

univariate score tests:

lhs op rhs X2 df p.value
1 .p1. == .p36. 0.125 1 0.723
2 .p2. == .p37. 0.594 1 0.441
3 .p3. == .p38. 0.323 1 0.570
4 .p4. == .p39. 0.327 1 0.567
5 .p5. == .p40. 2.131 1 0.144
6 .p6. == .p41. 1.823 1 0.177
7 .p7. == .p42. 1.128 1 0.288
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8 .p8. == .p43. 1.924 1 0.165
9 .p9. == .p44. 1.885 1 0.170
10 .p10. == .p45. 0.045 1 0.832
11 .p24. == .p59. 15.297 1 0.000
12 .p25. == .p60. 0.215 1 0.643
13 .p26. == .p61. 16.964 1 0.000
14 .p27. == .p62. 0.257 1 0.612
15 .p28. == .p63. 2.901 1 0.089
16 .p29. == .p64. 2.900 1 0.089
17 .p30. == .p65. 1.991 1 0.158
18 .p32. == .p67. 0.000 1 0.989
19 .p33. == .p68. 0.840 1 0.359

scalar3 <- cfa(model = financemodel, data = finance,
group = "sector",
std.lv = TRUE,
group.equal = c("loadings","intercepts"),
group.partial = c("item7 ~ 1", "item4 ~ 1"))

summary(compareFit(metric, scalar3))

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
metric 76 99417 99754 885.35
scalar3 82 99418 99718 899.16 13.812 0.02614 6 0.0318 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

metric 885.349† 76 .000 .075 .961† .954 .033† 99416.660† 99753.925
scalar3 899.161 82 .000 .072† .961 .957† .033 99418.472 99718.263†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

scalar3 - metric 6 -0.002 0 0.003 0 1.812 -35.661
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The ΋t of this partial model is still worse than themetric model. So, we need to release ad-
ditional equality constraints. After examining the modi΋cation indices again, we release
the equality constraint of Item 1’s intercept, estimate the model again, and compare this
second partial model to the metric model:

# Adjust the model for partial invariance testing
lavTestScore(scalar3)

$test

total score test:

test X2 df p.value
1 score 24.243 18 0.147

$uni

univariate score tests:

lhs op rhs X2 df p.value
1 .p1. == .p36. 0.276 1 0.599
2 .p2. == .p37. 0.946 1 0.331
3 .p3. == .p38. 1.352 1 0.245
4 .p4. == .p39. 0.127 1 0.722
5 .p5. == .p40. 2.132 1 0.144
6 .p6. == .p41. 1.826 1 0.177
7 .p7. == .p42. 1.128 1 0.288
8 .p8. == .p43. 1.919 1 0.166
9 .p9. == .p44. 1.883 1 0.170
10 .p10. == .p45. 0.046 1 0.830
11 .p24. == .p59. 6.551 1 0.010
12 .p25. == .p60. 0.744 1 0.388
13 .p27. == .p62. 3.488 1 0.062
14 .p28. == .p63. 2.901 1 0.089
15 .p29. == .p64. 2.900 1 0.089
16 .p30. == .p65. 1.991 1 0.158
17 .p32. == .p67. 0.000 1 0.989
18 .p33. == .p68. 0.840 1 0.359
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scalar4 <- cfa(model = financemodel, data = finance,
group = "sector",
std.lv = TRUE,
group.equal = c("loadings","intercepts"),
group.partial = c("item7 ~ 1", "item4 ~ 1",

"item1 ~ 1"))

summary(compareFit(metric, scalar4))

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
metric 76 99417 99754 885.35
scalar4 81 99414 99720 892.61 7.2647 0.015418 5 0.2017

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

metric 885.349† 76 .000 .075 .961† .954 .033† 99416.660 99753.925
scalar4 892.614 81 .000 .073† .961 .957† .033 99413.925† 99719.961†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

scalar4 - metric 5 -0.002 0 0.003 0 -2.735 -33.964

This time, the ΋t of the partial scalar model is not worse than that of the metric model (p
> .05), so we can conclude that partial scalar invariance holds for these data.

6.7 Step 4 Strict Invariance (Optional)

Finally, we can examine strict invariance by constraining the residuals to be equal
across groups. To do so, we simply add the residuals to the group.equal =
c("loadings","intercepts","residuals) argument. Note that we keep the
partial intercepts from the previous step and need to add partial residuals for those
items.

#Strict model
strict <- cfa(model = financemodel, data = finance,
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group = "sector",
std.lv = TRUE,
group.equal = c("loadings","intercepts","residuals"),
group.partial = c("item7 ~ 1", "item4 ~ 1",

"item1 ~ 1",
"item7 ~~ item7",
"item4 ~~ item4",
"item1 ~~ item1"))

Similar to previous steps, we can compare the ΋t of this model to the previous (partial
scalar) model:

summary(compareFit(scalar4, strict))

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
scalar4 81 99414 99720 892.61
strict 88 99423 99686 915.96 23.351 0.035012 7 0.00148 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

scalar4 892.614† 81 .000 .073 .961† .957 .033† 99413.925† 99719.961
strict 915.965 88 .000 .070† .960 .959† .033 99423.276 99685.593†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

strict - scalar4 7 -0.002 -0.001 0.003 0 9.351 -34.368

6.8 Step 5: Interpreting the Mean Difference between Public
and Private Sector Groups (Optional)

As we’ve been able to establish partial scalar invariance, we can compare the latent factor
means across groups. To do so, we use the ΋nal partial scalar model:
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subset(parameterEstimates(scalar4),
(op == "~1" & (lhs == "positive" | lhs == "negative")))

lhs op rhs block group label est se z pvalue ci.lower
34 positive ~1 1 1 0.000 0.000 NA NA 0.000
35 negative ~1 1 1 0.000 0.000 NA NA 0.000
69 positive ~1 2 2 -0.216 0.037 -5.823 0.000 -0.289
70 negative ~1 2 2 0.086 0.035 2.425 0.015 0.016

ci.upper
34 0.000
35 0.000
69 -0.143
70 0.155

To help with interpretation, the means of the latent factors in the ΋rst group (Public) are
΋xed to 0 and their variances are ΋xed to one. This constraint means that the freely
estimated latent means in the second group (Private) can be interpreted as “relative to”
the ΋rst group. In the output, we can see that the positive ΋nancial well-being mean is
negative (and signi΋cant) whereas the negative ΋nancial well-being mean is positive (and
signi΋cant). However, the factors’ variances in this group are not equal to 1 (they are
slightly smaller) and so these means are not measured on the same scale as the means
of the Public sector group. There are several ways to make the means comparable.

6.8.1 Step 5: Method 1 for making mean differences comparable

The ΋rst is to evaluate whether the latent factor variances can be constrained to equiva-
lence without resulting in worse model ΋t. This would place both groups’ factors on the
standardized scale (variance or sd = 1) and mean diΊerences can be interpreted in terms
of standard deviation units. To test this model, we can use the following code, adding
"lv.variances" to the group.equal argument and then testing whether the resulting
model ΋t signi΋cantly worse than the partial scalar model. Note that we do not have to
meet the strict invariance level to test this latent variance level of invariance.

lvvar <- cfa(model = financemodel, data = finance,
group = "sector",
std.lv = TRUE,
group.equal = c("loadings","intercepts",

"lv.variances"),
group.partial = c("item7 ~ 1", "item4 ~ 1",

"item1 ~ 1"))
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summary(compareFit(scalar4, lvvar))

################### Nested Model Comparison #########################

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
scalar4 81 99414 99720 892.61
lvvar 83 99410 99704 893.05 0.43956 0 2 0.8027

####################### Model Fit Indices ###########################
chisq df pvalue rmsea cfi tli srmr aic bic

scalar4 892.614† 81 .000 .073 .961 .957 .033† 99413.925 99719.961
lvvar 893.053 83 .000 .072† .961† .958† .034 99410.364† 99703.910†

################## Differences in Fit Indices #######################
df rmsea cfi tli srmr aic bic

lvvar - scalar4 2 -0.001 0 0.001 0.001 -3.56 -16.052

Constraining the latent factor variances to equivalence across groups does not result in
signi΋cantly worsemodel ΋t (p = .803), sowe can use the estimates from the lvvar output
to interpret mean diΊerences between the Public and Private sector groups.

subset(parameterEstimates(lvvar),
(op == "~1" & (lhs == "positive" | lhs == "negative")))

lhs op rhs block group label est se z pvalue ci.lower
34 positive ~1 1 1 0.000 0.000 NA NA 0.000
35 negative ~1 1 1 0.000 0.000 NA NA 0.000
69 positive ~1 2 2 -0.217 0.037 -5.829 0.000 -0.290
70 negative ~1 2 2 0.087 0.036 2.422 0.015 0.016

ci.upper
34 0.000
35 0.000
69 -0.144
70 0.157

Based on the results above, we can conclude that positive ΋nancial well-being is .22 stan-
dard deviations (SE = .04) lower for those working in the Private sector compared to those
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working in the Public section (p < .001). In addition, negative ΋nancial well-being is .09
standard deviations (SE = .04) higher for those working in the Private sector compared to
those working in the Public section (p = .015).

6.8.2 Step 5: Method 2 for making mean differences comparable

If the previousmethod would have shown that factor variances are not comparable, then
we could have used the formula for standardized mean diΊerences (Cohen’s D) to com-
pute mean diΊerences.

𝐶𝑜ℎ𝑒𝑛′𝑠𝐷 = (𝑚1 − 𝑚2)
√𝜎2

To do so, we need the latent factor means and variances from the partial scalar model.
We already know that the means and variances in the ΋rst group are 0 and 1 respectively,
so we only need to know the means and variances for group 2 (i.e., Private sector):

subset(parameterEstimates(scalar4),
(group == 2 &

(op == "~1" | op == "~~") & (lhs == "positive" | lhs == "negative")))

lhs op rhs block group label est se z pvalue ci.lower
56 positive ~~ positive 2 2 0.973 0.051 19.042 0.000 0.873
57 negative ~~ negative 2 2 0.967 0.051 18.882 0.000 0.867
58 positive ~~ negative 2 2 -0.818 0.042 -19.583 0.000 -0.899
69 positive ~1 2 2 -0.216 0.037 -5.823 0.000 -0.289
70 negative ~1 2 2 0.086 0.035 2.425 0.015 0.016

ci.upper
56 1.074
57 1.068
58 -0.736
69 -0.143
70 0.155

When variances are not equal across groups, we can compute separate standardized
mean diΊerences using each group’s variance in the denominator, which will give us a
range of plausible mean diΊerence eΊect sizes (not to be confused with a con΋dence
interval!). Here, we ΋rst compute the Cohen’s D using the ΋rst group’s variance (= 1):
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# positive
((-.216) - 0) / sqrt(1)

[1] -0.216

# negative
((.086) - 0) / sqrt(1)

[1] 0.086

Next, we compute the Cohen’s D using the second group’s variance estimates:

# positive
((-.216) - 0) / sqrt(.973)

[1] -0.2189764

# negative
((.086) - 0) / sqrt(.967)

[1] 0.08745511

So, depending on the standardizer (which variance) used, the Cohen’s D for positive ΋-
nancial well-being is approximately -.217 to -.219, and the Cohen’s D for negative ΋nan-
cial well-being is approximately .086 to .087. Note that the ranges here are really narrow
because the variances are so similar, the range would be larger if the diΊerence in the
variances was larger.

6.9 Summary

In this R lab, you were introduced to the steps involved in measurement invariance test-
ing, an important quantitative method that can help us collect evidence regarding the
fairness of our measurement scale. You also learned how to compare means of latent
variables, using several diΊerent approaches. This is the ΋nal R lab of this class!
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