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Model Fitting, according to frequentists
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Model Fitting, according to Bayesians
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Can Priors make a Model More Selective?

• When a model ‘fits well’, it does not tell us anything about the 
a priori likelihood of that model fitting any plausible data
• Some models have a worryingly high tendency to fit any data patterns 

(i.e., high fitting propensity; FP; Preacher, 2006)
• Without constraining such models, finding good fit is ‘nearly 

meaningless’ (Roberts & Pashler, 2000)

• Can we return meaning to good model fit?
• Can we use a series of increasingly fine-grained prior 

specifications to ensure that our model fits well only to data 
that align to our theory?
• Extending work by Vanpaemel (2009; Vanpaemel & Lee, 2012)



Priors as Filters

Source: Bear Grylls Survival Academy 
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Example of a Model with high FP:
The Bifactor Model
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Criticism of the well-fitting Bifactor Model

• “Indiscriminate use of the bifactor model without proper regard for theory 
is highly questionable.” (Thomas, 2012, p. 108)

• “[W]e caution against the adoption of a theoretical model that is built on 
a methodological house of cards.” (Watts et al., 2020, p. 318)

• “[T]he bifactor model has an undesirable tendency to fit any possible 
data” (Bonifay & Cai, 2017, p. 481)

• “[T]he mistaken inference of bifactor superiority seems to be driven by the 
general dimension’s erroneous accommodation of misspecifications 
through capturing theoretically unexplained variance and repackaging it 
as common variance, even though it is not.” (Greene et al., p. 756)



Theory-Informed Constraints of the 
Bifactor Model
Watts and colleagues (2019) proposed two theory-informed 
constraints for psychopathology bifactor model parameter 
values:

1. A bifactor model should produce reliable specific factors that are 
well represented by their constituent indicators.

2. If the general factor in a bifactor model reflects broad liability for 
psychopathology, it should be relatively equally represented by its 
constituent indicators.

We can translate these constraints to prior filters
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Priors as Filters



Priors as Filters
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FP Analysis to Test Priors as Filters

1. Generate 30,000 random data sets of N = 500 with 12 
variables 
• ockhamSEM R package (Falk & Muthukrishna, 2021)

2. Fit bifactor model with diffuse priors (Filter 1)
• blavaan R package (Merkle et al., 2021)

3. Assess model fit
• Bayesian SRMR ≤ .12

• This index does not have same cutoff guidelines as frequentist SRMR

4. Good fit? à Apply Filter 2 Priors
5. Still good fit with Filter 2? à Apply Filter 3 Priors



FP Analysis Results
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FP Analysis Results

Only 0.12% of all 
possible data got 

through the most fine-
grained filter (well-

represented + equally 
well-represented)



Applying Filters to a Single Data Set

• National Comorbidity Survey
(NCS)
• Random sample of N = 500

Frequentist Model Fit:
𝜒! 33 = 35.22, 𝑝 = 	 .363,	
𝐶𝐹𝐼 = 	 .996,	
𝑅𝑀𝑆𝐸𝐴 = 	 .012, 90%	𝐶𝐼	[.000, .035]	

Dysthymia PTSD Social 
Phobia

Simple 
Phobia

Alcohol 
Dep. Drug Dep. Antisocial 

Behavior
Conduct 
Disorder

p-factor

INT EXT

Generalized 
Anxiety

Major 
Depression

Agora
phobia



Applying Constraints to Example
Good fit ‘unconstrained’ bifactor model

constraints on loading magnitudes 
+ equivalence

constraints on loading magnitudes
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Conclusions & Implications

We can use Bayesian priors to constrain the bifactor model!
• This general procedure can be applied to any statistical 

model/type of parameter
• We can use priors to constrain the complexity of any model 

for which priors can be specified
• With constraints, gsoodness-of-fit can help us corroborate our 

theory
• We need more insight into: 
• How to specify proper priors for specific sample and model sizes
• What goodness of fit indices are best
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But did good fit corroborate our theory?

P-factor

Agora Phobia 0.761
Major Depression 0.582
Generalized Anxiety 0.460
Dysthymia 0.336
PTSD 0.508
Social Phobia 0.577
Simple Phobia 0.705
Alcohol Dependence 0.176
Drug Dependence 0.242
Antisocial Behavior 0.503
Conduct Disorder 0.304

Internalizing
Agora Phobia 0.283
Major Depression 0.753
Generalized Anxiety 0.428
Dysthymia 0.672
PTSD 0.368
Social Phobia -0.192
Simple Phobia -0.223

Externalizing
Alcohol Dependence 0.668
Drug Dependence 0.783
Antisocial Behavior 0.674
Conduct Disorder 0.619

Standardized Factor Loadings
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