# Fitting propensity analysis in R

Sonja D. Winter &

Tive Khumalo

**IMPS 2025** 

#### Motivation

Falk and Muthukrishna (2023) developed the ockhamSEM R package

- Made it easy to run fitting propensity analyses in R using familiar lavaan syntax
- Uses the *onion* method for uniformly sampling correlation matrices from the full data space

Several researchers have used this package to examine fitting propensity<sup>1</sup>

But! Analysis design was inconsistent across studies

- ➤ What part of the data space (all of it vs. positive manifold)?
- > How many correlation matrices should be sampled from the data space?
- > What fit indices should we focus on?
- ➤ Should fit indices based on non-converged analyses be considered?
- Is it fine to rely on default lavaan settings?

## Fitting propensity analysis in R

```
library(ockhamSEM)
                               p <- 3
Set up temp. correlation
                               temp_mat <- diag(p)</pre>
   matrix for number of
                               colnames(temp_mat) <- rownames(temp_mat) <- paste0("v", seq(1:p))</pre>
      variables in model
                               mod1 <- '
                              v3 \sim v1 + v2
          Specify model
                               v1 ~~ 0*v2
                               mod1.fit <- sem(mod1, sample.cov = temp_mat,</pre>
     Fit model to temp.
                                                start = "default",
                                                control = list(iter.max = 150),
      correlation matrix
                                                optim.force.converged = F,
                                                bounds = "none",
                                                std.lv = T,
                                                sample.nobs = 1000)
                           19
                               res <- run.fitprop(mod1.fit,
  Run fitting propensity
                                                   fit.measure = c("logl", "cfi", "srmr", "rmsea"),
                 analysis
                                                   rmethod = "onion", reps = 1000000,
                                                   onlypos = FALSE,
                                                                                                                           3
                                                   seed = 3242
```

#### Model estimation choices

```
library(ockhamSEM)
                               p <- 3
Set up temp. correlation
                               temp_mat <- diag(p)
   matrix for number of
                               colnames(temp_mat) <- rownames(temp_mat) <- paste0("v", seq(1:p))</pre>
      variables in model
                               mod1 <- '
                               v3 \sim v1 + v2
          Specify model
                                                                             What starting values?
                               v1 ~~ 0*v2
                                                                                      How many MLE iterations?
                               mod1.fit <- sem(mod1, sample.cov = temp_mat,</pre>
                                                                                               Force convergence?
     Fit model to temp.
                                                start = "default", ←
                                                control = list(iter.max = 150),
      correlation matrix
                                                                                           Place constraints on variances?
                                                optim.force.converged = F, ←
                                                                                       What identification constraints?
                           16
                                                bounds = "none", ←
                                                std.lv = T, \leftarrow
                                                                                          What sample size?
                                                sample.nobs = 1000)
                           18
                           19
                               res <- run.fitprop(mod1.fit,
  Run fitting propensity
                                                  fit.measure = c("logl", "cfi", "srmr", "rmsea"),
                 analysis
                                                   rmethod = "onion", reps = 1000000,
                                                   onlypos = FALSE,
                           23
                                                   seed = 3242)
```

### Fitting propensity analysis choices

```
library(ockhamSEM)
                              p <- 3
Set up temp. correlation
                              temp_mat <- diag(p)
  matrix for number of
                              colnames(temp_mat) <- rownames(temp_mat) <- paste0("v", seq(1:p))</pre>
      variables in model
                              mod1 <- '
                              v3 \sim v1 + v2
          Specify model
                                                                           What starting values?
                              v1 ~~ 0*v2
                                                                                    How many MLE iterations?
                              mod1.fit <- sem(mod1, sample.cov = temp_mat,</pre>
                                                                                             Force convergence?
     Fit model to temp.
                                               start = "default",
                                               control = list(iter.max = 150),
     correlation matrix
                                                                                         Place constraints on variances?
                                               optim.force.converged = F, -
                                               bounds = "none", -
                                                                                     What identification constraints?
                                              std.lv = T, ←
                                                                                       What sample size?
                                               sample.nobs = 1000)
                          18
                          19
                                                                                                  What fit indices?
                              res <- run.fitprop(mod1.fit,
  Run fitting propensity
                                                 fit.measure = c("logl", "cfi", "srmr", "rmsea"),
                                                  rmethod = "onion", reps = 1000000, ← How many samples from data space?
                 analysis
                                                  onlypos = FALSE, ←
                          23
                                                                          Can correlations be any value or
                                                  seed = 3242
                                                                                  positive manifold?
```

#### Data and model characteristics

```
library(ockhamSEM)
                                                                                      How many observed and latent
                                                                                         variables in the model?
Set up temp. correlation
                             temp_mat <- diag(p)
  matrix for number of
                             colnames(temp_mat) <- rownames(temp_mat) <- paste0("v", seq(1:p))</pre>
      variables in model
                             mod1 <- '
                             v3 \sim v1 + v2
          Specify model
                                                                         What starting values?
                             v1 ~~ 0*v2
                                                                                 How many MLE iterations?
                             mod1.fit <- sem(mod1, sample.cov = temp_mat,</pre>
                                                                                          Force convergence?
     Fit model to temp.
                                             start = "default",
                                             control = list(iter.max = 150),
     correlation matrix
                                                                                      Place constraints on variances?
                                             bounds = "none",
                                                                                  What identification constraints?
                                             std.lv = T, \leftarrow
                                                                                    What sample size?
                                             sample.nobs = 1000)
                         18
                         19
                                                                                              What fit indices?
                             res <- run.fitprop(mod1.fit,
  Run fitting propensity
                                                fit.measure = c("logl", "cfi", "srmr", "rmsea"),
                                                rmethod = "onion", reps = 1000000, — How many samples from data space?
                analysis
                                                onlypos = FALSE,
                         23
                                                                        Can correlations be any value or
                                                seed = 3242
                                                                               positive manifold?
```

#### Research Design

#### **Main Studies**

- Pilot Tests
- Study I: replicate and extend Preacher (2006) example with 2 simple path models
- Study 2: does the number of latent factors (I to 6) matter?
- Study 3: does the number of observed variables (9 to 45) matter?

Total data space was represented by 1,000,000 sample correlation matrices in each study

### Study Outcomes

We do not (cannot) know the true fitting propensity that we are aiming for

• Thus, we do not focus on bias, accuracy, etc.

In these studies, focus lies on understanding which researcher decisions matter under what circumstances.

• Within each study, we can use knowledge about model complexity to know which model should have higher fitting propensity

## Intuition about fitting propensity



#### Data and model characteristics

```
library(ockhamSEM)
                                                                How many observed and latent
                                                                   variables in the model?
    temp_mat <- diag(p)</pre>
    colnames(temp_mat) <- rownames(temp_mat) <- paste0("v", seq(1:p))</pre>
    mod1 <- '
    v3 \sim v1 + v2
                                                  What starting values?
    v1 ~~ 0*v2
10
                                                          How many MLE iterations?
11
    mod1.fit <- sem(mod1, sample.cov = temp_mat,</pre>
                                                                    Force convergence?
13
                    start = "default", ←
                    control = list(iter.max = 150),
                                                                Place constraints on variances?
                    optim.force.converged = F, ←
15
                                                            What identification constraints?
                    bounds = "none", ←
16
                    std.lv = T, \leftarrow
                                                              What sample size?
                    sample.nobs = 1000)
18
19
                                                                         What fit indices?
    res <- run.fitprop(mod1.fit,
21
                       fit.measure = c("logl", "cfi", "srmr", "rmsea"),
                        rmethod = "onion", reps = 1000000, ← How many samples from data space?
                        onlypos = FALSE, ←
23
                                                 Can correlations be any value or
                                                                                             10
                        seed = 3242
                                                         positive manifold?
```

#### Data and model characteristics

```
library(ockhamSEM)
                                                                How many observed and latent
                                                                   variables in the model?
    temp_mat <- diag(p)</pre>
    colnames(temp_mat) <- rownames(temp_mat) <- paste0("v", seq(1:p))</pre>
    mod1 <- '
    v3 \sim v1 + v2
                                                  What starting values?
    v1 ~~ 0*v2
10
                                                           How many MLE iterations?
11
    mod1.fit <- sem(mod1, sample.cov = temp_mat,</pre>
                                                                    Force convergence?
13
                    start = "default", ←
                    control = list(iter.max = 150),
                                                                Place constraints on variances?
                    optim.force.converged = F, ←
15
                    bounds = "none", ←
                                                             Vhat identification constraints?
16
                    std.lv = T, \leftarrow
                                                               What sample size?
                    sample.nobs = 1000)
18
19
                                                                         What fit indices?
    res <- run.fitprop(mod1.fit,
21
                       fit.measure = c("logl", "cfi", "srmr", "rmsea"),
                        rmethod = "onion", reps = 1000000, ← How many samples from data space?
                        onlypos = FALSE, ←
23
                                                 Can correlations be any value or
                                                                                             11
                        seed = 3242
                                                         positive manifold?
```

## Duration of fitting propensity analysis

Analyses completed on HPC using 12 cpus per fitting propensity analysis (using one million correlation matrices)

Study I





1.54-1.86 hrs

Study 2



105.790 - 643.59 hrs (4.38 – 26.79 days!)

Study 3



#### Convergence rates

- Positive manifold data spaces: Convergence rates are high across the board
- All correlations data spaces: Convergence drops when there are...
  - > more latent factors
  - > more observed variables
  - > no bounds on variances
  - > fewer MLE iterations

- In the most challenging condition, only **8270 of I million** correlation matrices converged (0.83%)
  - 24 indicator, 6-factor model with unit-variance constraints, no variance bounds, running for 150 MLE iterations using the data space based on all possible correlations

#### Intermezzo

Based on these results, we had the following questions:

- Do we need one million correlation matrices to ensure a stable result?
- (How) do we incorporate model non-convergence?
- Do we need to include all correlations in the data space?

# Do we need one million correlation matrices to ensure a stable result?



#### Do we need one million correlation matrices to ensure a stable result?



#### Do we need to include all correlations in the data space?



Assumes  $Cov(X_1, X_2) = 0$ 



Assumes  $Cov(X_1, X_2) = \beta_1 \times \beta_2$ 



# Do we need to include all correlations in the data space?



Assumes  $Cov(X_1, X_2) = 0$ 



Assumes  $Cov(X_1, X_2) = \beta_1 \times \beta_2$ 



#### What about for CFAs?



#### What about for CFAs?



#### Recommendations

#### Fitting propensity analysis choices

- If correlations can theoretically be negative, look at full data space
- 10,000 correlation matrices appear sufficient
- Different fit indices can reveal different aspects of a model's fitting propensity Model estimation options
- Starting values, identification constraints, and sample size do not matter
- Increasing MLE iterations improves convergence up to a point

#### Next steps

- Using variance bounds improves convergence, but tends to lower FP, does that matter?
- How best to handle non-convergence?
- How to explain discrepancies between fit indices?

# Thank you!

Sonja Winter sdwinter@missouri.edu