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Motivation

Falk and Muthukrishna (2023) developed the ockhamSEM R package

* Made it easy to run fitting propensity analyses in R using familiar lavaan syntax
* Uses the onion method for uniformly sampling correlation matrices from the full data
space
Several researchers have used this package to examine fitting propensity'

But! Analysis design was inconsistent across studies
»What part of the data space (all of it vs. positive manifold)?
»How many correlation matrices should be sampled from the data space!?
»What fit indices should we focus on?
» Should fit indices based on non-converged analyses be considered?
> ls it fine to rely on default lavaan settings!?



Fitting propensity analysis in R
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library(CockhamSEM)

p <- 3
temp_mat <- diag(p)
colnames(temp_mat) <- rownames(temp_mat) <- paste@("v", seq(l:p))

modl <- '
v ~ vl + V2
vl ~~ @*v2

modl.fit <- sem(modl, sample.cov = temp_mat,
start = "default",
control = list(iter.max =
optim.force.converged = F,
bounds = "none",
std.lv = T,
sample.nobs = 1000)

150),

res <- run.fitprop(modl.fit,
fit.measure = c("logl"”, "cfi", "srmr", "rmsea"),
rmethod = "onion", reps = 1000000,
onlypos = FALSE,
seed = 3242)



Model estimation choices

library(CockhamSEM)

p <- 3
temp_mat <- diag(p)

modl <-
v ~ vl + V2
vl ~~ @*v2
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11
12 modl.fit <- sem(modl, sample.cov = temp_mat,

colnames(temp_mat) <- rownames(temp_mat) <- paste@("v", seq(l:p))

What starting values?

How many MLE iterations?

Force convergence!

Place constraints on variances?

13 start = "default",
14 control = list(iter.max = 150),
15 Optim.Force.conve:gff—i_fl_—__—,,—————___

What identification constraints?

, srmr", "rmsea"),

16 bounds = “n2:E:l_——_——__________—————

17 std.lv = T, /What sample size?
18 sample.nobs = 1000)

19

20 res <- run.fitprop(modl.fit,

21 fit.measure = c("logl", "cfi"

22 rmethod = "onion", reps = 1000000,

23 onlypos = FALSE,

24 seed = 3242)



Fitting propensity analysis choices

library(CockhamSEM)
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4 temp_mat <- diag(p)

5 colnames(temp_mat) <- rownames(temp_mat) <- paste@("v", seq(l:p))
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modl <- '
v3 ~ vl + V2
vl ~~ @*vZ2
10
11
12 modl.fit <- sem(modl, sample.cov = temp_mat,
13 start = "default",
14 control = list(iter.max = 150),
15 optim.force.converged = F,
16 bounds = "none",
17 std.lv = T,
18 sample.nobs = 1000)
19
20 res <- run.fitprop(modl.fit, {/’—_—_-~§-—____\A/hat'ﬁt indices?
21 fit.measure = c("logl"”, "cfi", "srmr", "rmsea"),
22 rmethod = "onion®, reps = 1000000, *— How many samples from data space?

= onlypos = FALSE, Can correlations be any value or
24 seed = 3242) o ) 5
-- positive manifold?



Data and model characteristics
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library(CockhamSEM)
How many observed and latent

P <- 3 <« _—— variables in the model?

«

temp_mat <- diag(p)
colnames(temp_mat) <- rownames(temp_mat) <- paste@("v", seq(l:p))

vl ~~ @*v2

modl.fit <- sem(modl, sample.cov = temp_mat,
start = "default",
control = list(iter.max =
optim.force.converged = F,
bounds = "none",
std.lv = T,
sample.nobs = 1000)

150),

res <- run.fitprop(modl.fit,
fit.measure = c("logl"”, "cfi", "srmr", "rmsea"),
rmethod = "onion", reps = 1000000,
onlypos = FALSE,
seed = 3242) 6



Research Design

Main Studies

* Pilot Tests

* Study |:replicate and extend Preacher (2006) example with 2 simple path models
* Study 2: does the number of latent factors (I to 6) matter?

* Study 3:does the number of observed variables (9 to 45) matter?

Total data space was represented by 1,000,000 sample correlation matrices in each
study



Study Outcomes

We do not (cannot) know the true fitting propensity that we are aiming for

* Thus, we do not focus on bias, accuracy, etc.

In these studies, focus lies on understanding which researcher decisions matter
under what circumstances.

* Within each study, we can use knowledge about model complexity to know
which model should have higher fitting propensity



Intuition about fitting propensity
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Data and model characteristics
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library(CockhamSEM)

How many observed and latent

_— variables in the model?

vl ~~ @*v2

temp_mat <- diag(p)
colnames(temp_mat) <- rownames(temp_mat) <- paste@("v", seq(l:p))

What starting values?

How many MLE iterations?

modl.fit <- sem(modl, sample.cov = temp_mat,

start = "default", Force convergence!?
control = list(iter.max = 12?2:’/////,///”/’ . :
optim.force.conveV Place constraints on variances!?
bounds “nTe_“/-’—What identification constraints!?

std.lv

=T, /What sample size?
sample.nobs = 1000)

res <- run.fitprop(modl.fit, (/’—_—_--§"““'\A/hat'ﬁt indices!?

fit.measure = c("logl"”, "cfi", "srmr", "rmsea"),
rmethod = “onion”, reps = 1000000, ~— How many samples from data space?

onlypos = FALSE, Can correlations be any value or
seed = 3242) o

positive manifold?



Data and model characteristics

1 Tlibrary(CockhamSEM)

2 How many observed and latent
3 p< 3 « _—— variables in the model?

4 temp_mat <- diag(p)

5 colnames(temp_mat) <- rownames(temp_mat) <- paste@("v", seq(l:p))

6

7 modl <- '

8 Vv3~vl+v2 —

9 vl ~~ 0*v2

ﬁ ' How many MLE iterations?

12 modl.fit <- sem(modl, sample.cov = temp_mat,

13 start = "default", Force convergence!

14 control = list(iter.max = 150), P . . )
15 optim.force.conveV ace constraints on variances!
16 bounds = "none",

17 std.lv = T,‘<__’/_/’/__

18 sample.nobs = 1000)

19 ST

20 res <- run.fitprop(modl.fit, ‘/’—_—_---—____\A/hat'ﬁt indices?

21 fit.measure = c("logl"”, "cfi", "srmr", "rmsea"),

22 rmethod = "onion®, reps = 1000000, *— How many samples from data space?
= onlypos = FALSE, Can correlations be any value or

24 seed = 3242) 11

-- positive manifold?



Duration of fitting propensity analysis

Analyses completed on HPC using |2 cpus per fitting propensity analysis (using one
million correlation matrices)

Study |
@ B ,@‘ Ga:)%

|.54-1.86 hrs

105.790 - 643.59 hrs
(4.38 — 26.79 days!)

Study 3

116.42 - 1205.24 hrs
(4.83 — 50.21 days!)
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Convergence rates

* Positive manifold data spaces: Convergence rates are high across the board

* All correlations data spaces: Convergence drops when there are...
» more latent factors
» more observed variables
»no bounds on variances
» fewer MLE iterations

* In the most challenging condition, only 8270 of | million correlation matrices
converged (0.83%)

e 24 indicator, 6-factor model with unit-variance constraints, no variance bounds,
running for 150 MLE iterations using the data space based on all possible
correlations
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Intermezzo

Based on these results, we had the following questions:
* Do we need one million correlation matrices to ensure a stable result?
* (How) do we incorporate model non-convergence?

* Do we need to include all correlations in the data space!?

14



Do we need one million correlation matrices
to ensure a stable result?
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Do we need one million correlation matrices
to ensure a stable result?

Fitting Propensity (RMSEA < .27)
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Do we need to include all correlations in the
data space?
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Do we need to include all correlations in the
data space?
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What about for CFAs?
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What about for CFAs?
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Recommendations

Fitting propensity analysis choices

* If correlations can theoretically be negative, look at full data space

* 10,000 correlation matrices appear sufficient

* Different fit indices can reveal different aspects of a model’s fitting propensity
Model estimation options

* Starting values, identification constraints, and sample size do not matter

* Increasing MLE iterations improves convergence up to a point
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Next steps

* Using variance bounds improves convergence, but tends to lower FP, does that
matter?

* How best to handle non-convergence!

* How to explain discrepancies between fit indices!?
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Thank you!

Sonja Winter

sdwinter@missouri.edu
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