6  Structural Equation Modeling

Note

You can download the R code used in this lab by right-clicking this link and selecting “Save Link As…” in the drop-down menu: sem.R

6.1 Loading R packages

Load the required packages for this lab into your R environment.

library(rio)
library(ggplot2)
library(tidyr)
library(lavaan)
library(semTools)
library(modsem)

6.2 Loading Data

Load the data into your environment. For this lab we will use a dataset based on N = 441 children whose caregivers completed a survey about family environment and child behavior. You can download the data by right-clicking this link and selecting “Save Link As…” in the drop-down menu: data/projectkids.csv. Make sure to save it in the folder you are using for this class.

The full dataset and more information about this project can be found here: https://www.ldbase.org/datasets/72ab9852-8ebc-4ba0-bb1f-5f1c347e2572.

kids <- read.csv("data/projectkids.csv")

The dataset includes item responses to 5 Reading Problem items from the Colorado Learning Disability Questionnaire (CLDQ; rated on five-point scale from never to always), 9 Attention items from the The Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Scale (SWAN; rated on a seven-point scale from far below to far above average), and a composite, mean score of the Homework Problems Checklist (based on 19 items, rated on a four-point scale from never to very often).

Here are some example items from each scale:

CLDQ Reading Problems (item stem: Decide how well each statement describes your child):

  • Q1: Does/did your child have difficulty with spelling?

  • Q5: Does/did your child read below grade or expectancy level?

  • Q6: Does/did your child require extra help in school because of problems in reading and spelling?

SWAN Attention Items (item stem: How does your child compare to other children of the same age?):

  • Q1: Gives close attention to detail and avoids careless mistakes

  • Q2: Sustains attention on tasks or play activities

  • Q3: Listens when spoken to directly

  • Q5: Organizes tasks and activities

HPC Items (item stem: Circle the best answer that best describes your child’s homework habits):

  • Q1: Fails to bring home assignments and materials

  • Q4: Refuses to do homework assignment

  • Q6: Must be reminded to sit down and start homework

  • Q12: Easily frustrated by homework assignments

The hypothesis we want to test is whether there is an indirect effect of Attention, via Homework problems (or lack thereof), on Reading Problems. In other words, do kids with higher levels of attention experience fewer homework problems, which in turn is associated with fewer reading problems?

Note: This data file includes additional variables that we will use in a future R Lab.

6.3 Data Exploration

Before analyzing the data, we can look at the distribution of the variables to see if they follow a normal distribution (one of the main assumptions of the ML estimator that lavaan uses by default) or if we can see skew in the distributions.

kids %>%
  pivot_longer(everything()) %>%
  ggplot(aes(x=value)) +
  geom_histogram() + 
  facet_wrap(vars(name), scales = "free")

Do the histograms look “normal” enough? What can we do if there are issues with normality?

Package semTools includes a set of functions to evaluate the skew and kurtosis of observed variables:

# Univariate skew and kurtosis
apply(kids, 2, skew)
             cldq_1     cldq_2     cldq_4     cldq_5     cldq_6   cldq_18
skew (g1) 0.9726340  2.7834505  1.6533033  1.6591248  1.6700060 1.0359613
se        0.1167748  0.1166424  0.1166424  0.1167748  0.1166424 0.1169078
z         8.3291402 23.8631175 14.1741228 14.2078958 14.3173193 8.8613554
p         0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 0.0000000
             cldq_19    cldq_20    chaos1   chaos2     chaos3    chaos4
skew (g1)  1.1701202  1.6292702  1.385669 1.065559  1.2892938  1.436448
se         0.1169078  0.1169078  0.117175 0.117175  0.1175793  0.117175
z         10.0089172 13.9363727 11.825635 9.093743 10.9653157 12.258996
p          0.0000000  0.0000000  0.000000 0.000000  0.0000000  0.000000
                 chaos5       chaos6     swan_1      swan_2     swan_3
skew (g1) -7.606825e-01 9.620434e-01 -0.0384075 -0.28474452 -0.1664108
se         1.170411e-01 1.175793e-01  0.1235604  0.12403473  0.1235604
z         -6.499274e+00 8.182084e+00 -0.3108398 -2.29568375 -1.3467971
p          8.070833e-11 2.220446e-16  0.7559224  0.02169397  0.1780456
               swan_4      swan_5      swan_6     swan_7      swan_8
skew (g1) -0.08387429 -0.09631494 -0.25689087 -0.1524466 -0.02334995
se         0.12371791  0.12324720  0.12356041  0.1237179  0.12356041
z         -0.67794785 -0.78147772 -2.07907099 -1.2322114 -0.18897595
p          0.49780476  0.43452158  0.03761083  0.2178701  0.85011167
               swan_9   hpc_mean
skew (g1) -0.07898916  1.4079328
se         0.12340351  0.1166424
z         -0.64008847 12.0705092
p          0.52211509  0.0000000
apply(kids, 2, kurtosis)
                   cldq_1     cldq_2       cldq_4       cldq_5       cldq_6
Excess Kur (g2) 0.2298165  7.5171117 1.660876e+00 1.464507e+00 1.488210e+00
se              0.2335497  0.2332847 2.332847e-01 2.335497e-01 2.332847e-01
z               0.9840156 32.2229039 7.119522e+00 6.270642e+00 6.379370e+00
p               0.3251078  0.0000000 1.082912e-12 3.595619e-10 1.778178e-10
                   cldq_18     cldq_19      cldq_20       chaos1      chaos2
Excess Kur (g2) -0.2886126 0.638098194 1.908537e+00 1.442886e+00 -0.08115418
se               0.2338155 0.233815534 2.338155e-01 2.343500e-01  0.23434997
z               -1.2343601 2.729066730 8.162577e+00 6.156973e+00 -0.34629482
p                0.2170688 0.006351385 2.220446e-16 7.414842e-10  0.72912116
                    chaos3   chaos4      chaos5     chaos6      swan_1
Excess Kur (g2) 0.44657989 1.996702 -0.40430533 0.55090353 -0.51524242
se              0.23515854 0.234350  0.23408229 0.23515854  0.24712083
z               1.89905880 8.520172 -1.72719311 2.34268988 -2.08498181
p               0.05755675 0.000000  0.08413299 0.01914529  0.03707095
                    swan_2      swan_3       swan_4      swan_5     swan_6
Excess Kur (g2) -0.2199770 -0.45229948 -0.678691670 -0.62596197 -0.3902963
se               0.2480695  0.24712083  0.247435830  0.24649441  0.2471208
z               -0.8867558 -1.83027667 -2.742899730 -2.53945709 -1.5793745
p                0.3752104  0.06720858  0.006089928  0.01110247  0.1142502
                     swan_7     swan_8     swan_9  hpc_mean
Excess Kur (g2) -0.61695200 -0.3109368 -0.3559437 1.9502122
se               0.24743583  0.2471208  0.2468070 0.2332847
z               -2.49338182 -1.2582379 -1.4421946 8.3597932
p                0.01265327  0.2083057  0.1492475 0.0000000

Which variables are significantly skewed? And which have significant issues with kurtosis?

6.4 Measurement Model

In the first step of model estimation, we will specify a CFA with all measured constructs and covariances between all factors. For the HPC mean score, we can specify a single-indicator factor. To do so, we need some estimate of reliability. This checklist is a highly reliable scale with a previously found Cronbach’s alpha of .96 (to be honest, this may mean that many of the items have so much overlap that the measured construct is quite narrow in its operational definition). Next, we need to know the variance in the HPC mean score in our sample, and then use the appropriate formula to compute the residual variance estimate:

var(kids$hpc_mean)
[1] 0.3928782
# residual = (1 - .96) * 0.393
(1 - .96) * 0.393
[1] 0.01572

Next, we can specify and estimate the full measurement model. As some of the observed variables are skewed, we will use the mlr estimator. In addition, our data contain some missing values. For this lab, we will assume that these data are missing at random (MAR) and us full information maximum likelihood (fiml) to still use all available data.

Note

When using mlr, we get additional versions of approximate fit indices. Use the robust version if available, otherwise use the scaled version.

big_cfa <- '
readprob =~ cldq_1 + cldq_2 + cldq_4 + cldq_5 + cldq_6
attention =~ swan_1 + swan_2 + swan_3 + swan_4 + swan_5 + swan_6 + 
             swan_7 + swan_8 + swan_9
             
hwp =~ 1*hpc_mean
hpc_mean ~~ 0.01572*hpc_mean
'

fit_cfa <- cfa(big_cfa, kids, 
               estimator = "mlr", 
               missing = "fiml")

summary(fit_cfa, fit.measures = T, estimates = F)
lavaan 0.6-19 ended normally after 65 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        47

  Number of observations                           441
  Number of missing patterns                        13

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               294.259     214.704
  Degrees of freedom                                88          88
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.371
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              5812.658    3750.370
  Degrees of freedom                               105         105
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.550

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.964       0.965
  Tucker-Lewis Index (TLI)                       0.957       0.959
                                                                  
  Robust Comparative Fit Index (CFI)                         0.968
  Robust Tucker-Lewis Index (TLI)                            0.962

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -7407.271   -7407.271
  Scaling correction factor                                  1.639
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -7260.142   -7260.142
  Scaling correction factor                                  1.464
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               14908.542   14908.542
  Bayesian (BIC)                             15100.727   15100.727
  Sample-size adjusted Bayesian (SABIC)      14951.571   14951.571

Root Mean Square Error of Approximation:

  RMSEA                                          0.073       0.057
  90 Percent confidence interval - lower         0.064       0.049
  90 Percent confidence interval - upper         0.082       0.065
  P-value H_0: RMSEA <= 0.050                    0.000       0.076
  P-value H_0: RMSEA >= 0.080                    0.106       0.000
                                                                  
  Robust RMSEA                                               0.070
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.082
  P-value H_0: Robust RMSEA <= 0.050                         0.003
  P-value H_0: Robust RMSEA >= 0.080                         0.089

Standardized Root Mean Square Residual:

  SRMR                                           0.034       0.034

What does the chi-square test of model fit tell us?

We will also use local fit information to give us more insight into the fit of our measurement model.

residuals(fit_cfa, type = "cor.bollen")$cov
         cldq_1 cldq_2 cldq_4 cldq_5 cldq_6 swan_1 swan_2 swan_3 swan_4 swan_5
cldq_1    0.000                                                               
cldq_2    0.078  0.000                                                        
cldq_4    0.034  0.028  0.000                                                 
cldq_5   -0.056 -0.024 -0.002  0.000                                          
cldq_6   -0.020 -0.021 -0.010  0.023  0.000                                   
swan_1   -0.095  0.021 -0.009 -0.056 -0.051  0.000                            
swan_2   -0.031  0.051  0.028 -0.009 -0.002  0.064  0.000                     
swan_3    0.031  0.100  0.059  0.011  0.005  0.013  0.065  0.000              
swan_4   -0.017  0.078  0.061  0.001 -0.008 -0.026  0.001  0.050  0.000       
swan_5   -0.054  0.061  0.065  0.005  0.004 -0.008 -0.035 -0.063  0.023  0.000
swan_6   -0.069  0.010 -0.018 -0.094 -0.067  0.008  0.008 -0.029 -0.014  0.012
swan_7    0.000  0.084  0.071 -0.004 -0.016 -0.029 -0.034 -0.031 -0.006  0.045
swan_8   -0.057  0.028  0.036 -0.029 -0.023 -0.017  0.011 -0.004 -0.035  0.002
swan_9   -0.039  0.015  0.047 -0.034 -0.037  0.001 -0.020  0.018  0.014 -0.022
hpc_mean  0.065 -0.021 -0.040 -0.003  0.025 -0.028  0.013  0.042 -0.002  0.001
         swan_6 swan_7 swan_8 swan_9 hpc_mn
cldq_1                                     
cldq_2                                     
cldq_4                                     
cldq_5                                     
cldq_6                                     
swan_1                                     
swan_2                                     
swan_3                                     
swan_4                                     
swan_5                                     
swan_6    0.000                            
swan_7    0.004  0.000                     
swan_8    0.036  0.004  0.000              
swan_9   -0.010  0.021 -0.002  0.000       
hpc_mean  0.036 -0.009 -0.042  0.000  0.000

None of the correlation residuals are > |.10|, indicating that remaining misfit might be trivial. Note that many people (including you), may stop at this point and continue to specify the structural model. However, this is a lab, so I want to show you some strategies for mindful model adjustment.

The approximate fit indices (especially RMSEA) indicate that global fit is not (approximately) amazing. I will use the modification indices to see if there are any parameters that, when added to the model, would meaningfully improve model fit. To ensure that we don’t get distracted by trivial options, we can add a somewhat large minimum.value with which the model Chi-square needs to improve for a parameter to be included in the output.

modindices(fit_cfa, sort. = TRUE, minimum.value = 15)
       lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
145 swan_1 ~~ swan_2 29.330  0.169   0.169    0.311    0.311
176 swan_5 ~~ swan_7 25.010  0.167   0.167    0.303    0.303
163 swan_3 ~~ swan_5 22.381 -0.179  -0.179   -0.267   -0.267
124 cldq_5 ~~ cldq_6 21.551  0.121   0.121    0.428    0.428
87  cldq_1 ~~ cldq_5 17.822 -0.110  -0.110   -0.248   -0.248
162 swan_3 ~~ swan_4 17.421  0.135   0.135    0.242    0.242
154 swan_2 ~~ swan_3 17.308  0.144   0.144    0.231    0.231

The largest modification index is associated with the residual covariance between the first two items of the SWAN (measuring attention). Both of these items contain the word ‘attention’ (see above), whereas none of the other items on this subscale contain that word. Thus, it may be reasonable that parents respond very similarly to these items because they share more in common than they do with the other items on the subscale.

6.5 Improving the Measurement Model

After adding this residual covariance to the model, we estimate and evaluate the model again.

big_cfa2 <- '
readprob =~ cldq_1 + cldq_2 + cldq_4 + cldq_5 + cldq_6
attention =~ swan_1 + swan_2 + swan_3 + swan_4 + swan_5 + swan_6 + 
             swan_7 + swan_8 + swan_9
             
hwp =~ 1* hpc_mean
hpc_mean ~~ 0.01572*hpc_mean

swan_1 ~~ swan_2
'

fit_cfa2 <- cfa(big_cfa2, kids, 
                estimator = "mlr", 
                missing = "fiml")

summary(fit_cfa2, fit.measures = T, estimates = F)
lavaan 0.6-19 ended normally after 73 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        48

  Number of observations                           441
  Number of missing patterns                        13

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               265.499     195.622
  Degrees of freedom                                87          87
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.357
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              5812.658    3750.370
  Degrees of freedom                               105         105
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.550

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.969       0.970
  Tucker-Lewis Index (TLI)                       0.962       0.964
                                                                  
  Robust Comparative Fit Index (CFI)                         0.973
  Robust Tucker-Lewis Index (TLI)                            0.968

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -7392.891   -7392.891
  Scaling correction factor                                  1.658
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -7260.142   -7260.142
  Scaling correction factor                                  1.464
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               14881.782   14881.782
  Bayesian (BIC)                             15078.057   15078.057
  Sample-size adjusted Bayesian (SABIC)      14925.727   14925.727

Root Mean Square Error of Approximation:

  RMSEA                                          0.068       0.053
  90 Percent confidence interval - lower         0.059       0.045
  90 Percent confidence interval - upper         0.078       0.062
  P-value H_0: RMSEA <= 0.050                    0.001       0.259
  P-value H_0: RMSEA >= 0.080                    0.019       0.000
                                                                  
  Robust RMSEA                                               0.065
  90 Percent confidence interval - lower                     0.053
  90 Percent confidence interval - upper                     0.077
  P-value H_0: Robust RMSEA <= 0.050                         0.023
  P-value H_0: Robust RMSEA >= 0.080                         0.019

Standardized Root Mean Square Residual:

  SRMR                                           0.034       0.034

We can test if this model is a better fit to our data than the previous model (note that I used @nested here to extract only the Chi-squared difference table).

comp_12 <- compareFit(fit_cfa, fit_cfa2)
comp_12@nested

Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")

lavaan->unknown():  
   lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
   robust test that should be reported per model. A robust difference test is 
   a function of two standard (not robust) statistics.
         Df   AIC   BIC  Chisq Chisq diff Df diff Pr(>Chisq)    
fit_cfa2 87 14882 15078 265.50                                  
fit_cfa  88 14908 15101 294.26     11.369       1  0.0007469 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What does the Chi-square difference test tell us?

Let’s see if there are any other large modification indices that are meaningfully larger than other modification indices:

modindices(fit_cfa2, sort. = TRUE, minimum.value = 15)
       lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
163 swan_3 ~~ swan_5 23.062 -0.182  -0.182   -0.273   -0.273
125 cldq_5 ~~ cldq_6 21.523  0.121   0.121    0.428    0.428
176 swan_5 ~~ swan_7 20.546  0.150   0.150    0.281    0.281
154 swan_2 ~~ swan_3 18.952  0.146   0.146    0.225    0.225
162 swan_3 ~~ swan_4 18.763  0.141   0.141    0.254    0.254
88  cldq_1 ~~ cldq_5 17.806 -0.110  -0.110   -0.248   -0.248

There are still some modification indices > 15, but the first one does not necessarily make theoretical sense. The suggested modification is to add a residual covariance between SWAN item 3 and 5 (see above for content), but if we look at the epc column (which stands for expected parameter change), it expects that that covariance is going to be negative. A negative residual covariance indicates that there may be an omitted common cause that affects each item in the opposite way. In other words, item 3 and 5 may have less in common than the measurement model predicted. While the content of item 3 and 5 is not extremely similar, they are still both hypothesized to measure attention on this well-validated scale. Thus, adding this residual covariance does not seem theoretically justified. It may just be a peculiarity of our sample.

The next set of modification indices have very similar values, thus, at least in statistical terms, there is no real reason to pick one over the other. CLDQ item 5 and 6 (see above) are both about reading problems that have emerged in the school setting (while other questions on this subscale are about reading problems more generally), so there may be theoretical justification to add this residual covariance. In addition, the epc for this modification indicates that the standardized residual correlation (in sepc.all column) between these two items is .43, which can be considered a large correlation. Compared to the next largest modification index, there is more evidence that adding this residual covariance is theoretically justified.

6.6 Improving the Measurement Model (Round 2)

After adding this residual covariance to the model, we estimate and evaluate the model again.

big_cfa3 <- '
readprob =~ cldq_1 + cldq_2 + cldq_4 + cldq_5 + cldq_6
attention =~ swan_1 + swan_2 + swan_3 + swan_4 + swan_5 + swan_6 + 
             swan_7 + swan_8 + swan_9
             
hwp =~ 1* hpc_mean
hpc_mean ~~ 0.01572*hpc_mean

swan_1 ~~ swan_2
cldq_5 ~~ cldq_6
'

fit_cfa3 <- cfa(big_cfa3, kids, 
                estimator = "mlr", 
                missing = "fiml")

summary(fit_cfa3, fit.measures = T, estimates = F)
lavaan 0.6-19 ended normally after 66 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        49

  Number of observations                           441
  Number of missing patterns                        13

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               246.103     184.173
  Degrees of freedom                                86          86
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.336
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              5812.658    3750.370
  Degrees of freedom                               105         105
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.550

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.972       0.973
  Tucker-Lewis Index (TLI)                       0.966       0.967
                                                                  
  Robust Comparative Fit Index (CFI)                         0.976
  Robust Tucker-Lewis Index (TLI)                            0.971

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -7383.193   -7383.193
  Scaling correction factor                                  1.688
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -7260.142   -7260.142
  Scaling correction factor                                  1.464
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               14864.386   14864.386
  Bayesian (BIC)                             15064.749   15064.749
  Sample-size adjusted Bayesian (SABIC)      14909.246   14909.246

Root Mean Square Error of Approximation:

  RMSEA                                          0.065       0.051
  90 Percent confidence interval - lower         0.056       0.042
  90 Percent confidence interval - upper         0.075       0.060
  P-value H_0: RMSEA <= 0.050                    0.005       0.422
  P-value H_0: RMSEA >= 0.080                    0.005       0.000
                                                                  
  Robust RMSEA                                               0.062
  90 Percent confidence interval - lower                     0.049
  90 Percent confidence interval - upper                     0.074
  P-value H_0: Robust RMSEA <= 0.050                         0.060
  P-value H_0: Robust RMSEA >= 0.080                         0.006

Standardized Root Mean Square Residual:

  SRMR                                           0.036       0.036

We can test if this model is a better fit to our data than the previous model.

comp_23 <- compareFit(fit_cfa3, fit_cfa2)
comp_23@nested

Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")

lavaan->unknown():  
   lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
   robust test that should be reported per model. A robust difference test is 
   a function of two standard (not robust) statistics.
         Df   AIC   BIC Chisq Chisq diff Df diff Pr(>Chisq)  
fit_cfa3 86 14864 15065 246.1                                
fit_cfa2 87 14882 15078 265.5     6.1408       1    0.01321 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What does the Chi-square difference test tell us?

Let’s see if there are any other large modification indices that are meaningfully larger than other modification indices:

modindices(fit_cfa3, sort. = TRUE, minimum.value = 15)
       lhs op    rhs     mi    epc sepc.lv sepc.all sepc.nox
163 swan_3 ~~ swan_5 23.119 -0.182  -0.182   -0.274   -0.274
176 swan_5 ~~ swan_7 20.511  0.150   0.150    0.280    0.280
154 swan_2 ~~ swan_3 18.939  0.146   0.146    0.225    0.225
162 swan_3 ~~ swan_4 18.746  0.141   0.141    0.253    0.253

We might consider adding the residual covariance between SWAN item 5 and 7. Both items mention ‘activities’, but there are many other items on this subscale that contain the word ‘activities’, so there is nothing special about this pair of items. Any further modifications may be purely data-driven (i.e., exploratory).

In addition to model fit, we can also consider how well the factor explain variance among the observed items.

lavInspect(fit_cfa3, what = "rsquare")
hpc_mean   cldq_1   cldq_2   cldq_4   cldq_5   cldq_6   swan_1   swan_2 
   0.960    0.524    0.567    0.829    0.706    0.775    0.715    0.717 
  swan_3   swan_4   swan_5   swan_6   swan_7   swan_8   swan_9 
   0.584    0.823    0.790    0.720    0.792    0.674    0.759 

Are the R-squared values sufficiently high to support that our measurement model is accounting for enough common variance among the items?

Finally, we can examine the reliability of our factors using coefficient Omega (note that the output does not include the hwp factor, since that’s a single-indicator factor, and you need multiple indicators to compute coefficient Omega):

compRelSEM(fit_cfa)
 readprob attention 
    0.920     0.962 

Overall, I’m satisfied with the measurement model component of the SEM. The two residual covariances will need to be replicated in new samples to confirm that there is some shared cause among them that is separate from their main latent factors.

Note that R-squared and reliability are not affected by residual covariances, but they would be affected by added cross-loadings.

6.7 Structural Model

Now that we have finalized the measurement model, we can move on to the structural model. Let’s specify and estimate the hypothesized structural model:

big_sem <- '
# Measurement Model
readprob =~ cldq_1 + cldq_2 + cldq_4 + cldq_5 + cldq_6
attention =~ swan_1 + swan_2 + swan_3 + swan_4 + swan_5 + swan_6 + 
             swan_7 + swan_8 + swan_9
             
hwp =~ 1* hpc_mean
hpc_mean ~~ 0.01572*hpc_mean

swan_1 ~~ swan_2
cldq_5 ~~   cldq_6

# Structural Model
readprob ~ b*hwp
hwp ~ a*attention


# Indirect Effects
ind.att.hwp := a*b
'

fit_sem <- sem(big_sem, kids, 
               estimator = "mlr", 
               missing = "fiml")

summary(fit_sem, fit.measures = T, estimates = F)
lavaan 0.6-19 ended normally after 60 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        48

  Number of observations                           441
  Number of missing patterns                        13

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               249.799     187.394
  Degrees of freedom                                87          87
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.333
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              5812.658    3750.370
  Degrees of freedom                               105         105
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.550

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.971       0.972
  Tucker-Lewis Index (TLI)                       0.966       0.967
                                                                  
  Robust Comparative Fit Index (CFI)                         0.976
  Robust Tucker-Lewis Index (TLI)                            0.971

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -7385.041   -7385.041
  Scaling correction factor                                  1.702
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -7260.142   -7260.142
  Scaling correction factor                                  1.464
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               14866.082   14866.082
  Bayesian (BIC)                             15062.356   15062.356
  Sample-size adjusted Bayesian (SABIC)      14910.027   14910.027

Root Mean Square Error of Approximation:

  RMSEA                                          0.065       0.051
  90 Percent confidence interval - lower         0.056       0.042
  90 Percent confidence interval - upper         0.075       0.060
  P-value H_0: RMSEA <= 0.050                    0.004       0.401
  P-value H_0: RMSEA >= 0.080                    0.005       0.000
                                                                  
  Robust RMSEA                                               0.062
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.074
  P-value H_0: Robust RMSEA <= 0.050                         0.055
  P-value H_0: Robust RMSEA >= 0.080                         0.006

Standardized Root Mean Square Residual:

  SRMR                                           0.046       0.046

We can compare this model to a just identified structural model that includes the direct effect from Attention to Reading Problems:

big_sem2 <- '
# Measurement Model
readprob =~ cldq_1 + cldq_2 + cldq_4 + cldq_5 + cldq_6
attention =~ swan_1 + swan_2 + swan_3 + swan_4 + swan_5 + swan_6 + 
             swan_7 + swan_8 + swan_9

hwp =~ 1* hpc_mean
hpc_mean ~~ 0.01572*hpc_mean

swan_1 ~~ swan_2
cldq_5 ~~   cldq_6

# Structural Model
readprob ~ b*hwp + c*attention
hwp ~ a*attention


# Indirect Effects
ind.att.hwp := a*b
tot.att := c + a*b
'

fit_sem2 <- sem(big_sem2, kids, 
                estimator = "mlr", 
                missing = "fiml")

comp_34 <- compareFit(fit_sem, fit_sem2)
comp_34@nested

Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")

lavaan->unknown():  
   lavaan NOTE: The "Chisq" column contains standard test statistics, not the 
   robust test that should be reported per model. A robust difference test is 
   a function of two standard (not robust) statistics.
         Df   AIC   BIC Chisq Chisq diff Df diff Pr(>Chisq)  
fit_sem2 86 14864 15065 246.1                                
fit_sem  87 14866 15062 249.8     3.5066       1    0.06112 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What does the Chi-square difference test tell us?

6.8 Parameter Estimate Interpretation

Now that we’ve finalized our structural model, we can interpret the parameter estimates. We will re-estimate the final model, using bootstrapping to get confidence intervals for the indirect effect. Note that we cannot combine mlr with bootstrapping, because the bootstrap method itself is a way of addressing non-normality. So we change the estimator back to ml.

fit_semb <- sem(big_sem, kids, 
                estimator = "ml", 
                missing = "fiml",
                se = "bootstrap", 
                bootstrap = 1000,
                iseed = 8789)

parameterEstimates(fit_semb, boot.ci.type = "bca.simple", 
                   ci = TRUE, se = TRUE, 
                   zstat = FALSE, pvalue = FALSE,
                   output = "text")

Latent Variables:
                   Estimate  Std.Err ci.lower ci.upper
  readprob =~                                         
    cldq_1            1.000             1.000    1.000
    cldq_2            0.765    0.064    0.622    0.877
    cldq_4            1.272    0.076    1.134    1.438
    cldq_5            1.257    0.083    1.113    1.444
    cldq_6            1.326    0.083    1.186    1.509
  attention =~                                        
    swan_1            1.000             1.000    1.000
    swan_2            0.940    0.035    0.865    1.001
    swan_3            0.831    0.049    0.735    0.929
    swan_4            1.092    0.043    1.015    1.183
    swan_5            1.175    0.049    1.085    1.271
    swan_6            1.032    0.048    0.940    1.123
    swan_7            1.104    0.051    1.013    1.204
    swan_8            1.020    0.051    0.937    1.139
    swan_9            1.030    0.040    0.956    1.109
  hwp =~                                              
    hpc_mean          1.000             1.000    1.000

Regressions:
                   Estimate  Std.Err ci.lower ci.upper
  readprob ~                                          
    hwp        (b)    0.687    0.074    0.545    0.833
  hwp ~                                               
    attention  (a)   -0.360    0.022   -0.403   -0.318

Covariances:
                   Estimate  Std.Err ci.lower ci.upper
 .swan_1 ~~                                           
   .swan_2            0.171    0.050    0.075    0.282
 .cldq_5 ~~                                           
   .cldq_6            0.118    0.044    0.030    0.214

Intercepts:
                   Estimate  Std.Err ci.lower ci.upper
   .cldq_1            1.988    0.053    1.877    2.086
   .cldq_2            1.327    0.038    1.249    1.401
   .cldq_4            1.646    0.054    1.535    1.746
   .cldq_5            1.663    0.059    1.545    1.784
   .cldq_6            1.662    0.058    1.553    1.782
   .swan_1            4.541    0.073    4.410    4.703
   .swan_2            4.720    0.069    4.597    4.876
   .swan_3            4.838    0.067    4.710    4.974
   .swan_4            4.624    0.075    4.476    4.774
   .swan_5            4.427    0.083    4.272    4.593
   .swan_6            4.646    0.078    4.501    4.813
   .swan_7            4.529    0.080    4.379    4.701
   .swan_8            4.055    0.079    3.908    4.220
   .swan_9            4.541    0.073    4.397    4.693
   .hpc_mean          1.676    0.031    1.619    1.738
   .readprob          0.000             0.000    0.000
    attention         0.000             0.000    0.000
   .hwp               0.000             0.000    0.000

Variances:
                   Estimate  Std.Err ci.lower ci.upper
   .hpc_mean          0.016             0.016    0.016
   .cldq_1            0.570    0.058    0.460    0.690
   .cldq_2            0.279    0.039    0.213    0.369
   .cldq_4            0.207    0.047    0.127    0.321
   .cldq_5            0.418    0.071    0.290    0.570
   .cldq_6            0.324    0.044    0.247    0.434
   .swan_1            0.623    0.072    0.497    0.790
   .swan_2            0.546    0.062    0.439    0.687
   .swan_3            0.769    0.080    0.628    0.944
   .swan_4            0.400    0.041    0.327    0.482
   .swan_5            0.573    0.070    0.460    0.751
   .swan_6            0.648    0.102    0.490    0.916
   .swan_7            0.499    0.093    0.357    0.732
   .swan_8            0.784    0.082    0.645    0.986
   .swan_9            0.525    0.058    0.424    0.649
   .readprob          0.449    0.065    0.329    0.582
    attention         1.561    0.141    1.294    1.857
   .hwp               0.174    0.021    0.139    0.218

Defined Parameters:
                   Estimate  Std.Err ci.lower ci.upper
    ind.att.hwp      -0.247    0.031   -0.310   -0.187
lavInspect(fit_semb, what = "rsquare")
hpc_mean   cldq_1   cldq_2   cldq_4   cldq_5   cldq_6   swan_1   swan_2 
   0.960    0.524    0.568    0.831    0.704    0.773    0.715    0.717 
  swan_3   swan_4   swan_5   swan_6   swan_7   swan_8   swan_9 readprob 
   0.584    0.823    0.790    0.719    0.792    0.674    0.759    0.283 
     hwp 
   0.537 

The direct effect of attention on homework problems is negative (b = -.358, 95% CI = [-.402,-.317]),indicating that kids with higher attention levels experience fewer homework problems. The direct effect of homework problems on reading problems is positive (b = .690, 95% CI = [.547, .833]), indicating that kids with more homework problems experience more reading problems. This means that the indirect effect of attention on reading problems through homework problems is negative (b = -.247, 95% CI = [-.309,-.191]), which indicates that the decrease in homework problems that is associated with a one-unit increase in attention is associated with a decrease in reading problems. Overall, the model explains 28% of the variability in homework problems and 54% of the variability in reading problems.

In a paper, you could report all parameter values (including those from the measurement model) as unstandardized + 95% CI and standardized + SE in a table and/or figure.

6.9 Interaction Effects with Latent Variables

Next, I will use these data to illustrate the process of estimating interaction effects between latent factors. Here, we will test the hypothesis that Attentiveness moderates the association between Reading Problems and Homework Problems (which acts as the outcome variable here!).

We can use the modsem package to help estimate these interaction effects. To include the interaction effect in the model specification, you do the following (note structural model section):

big_sem3 <- '
# Measurement Model
readprob =~ cldq_1 + cldq_2 + cldq_4 + cldq_5 + cldq_6
attention =~ swan_1 + swan_2 + swan_3 + swan_4 + swan_5 + swan_6 + 
             swan_7 + swan_8 + swan_9

hwp =~ 1* hpc_mean
hpc_mean ~~ 0.01572*hpc_mean

swan_1 ~~ swan_2
cldq_5 ~~   cldq_6

# Structural Model
hwp ~ readprob + attention + readprob:attention
'

There are different methods for estimating an interaction effect between latent variables. Three main options are: the product indicator approach (using double centering), latent model structural equations (LMS), and quasi maximum likelihood estimation (QML). Of these, LMS and QML take more time to estimate and require complete data (but may be more accurate than the product indicator approach and have options for comparing model fit with and without the interaction effect). Here, I will demonstrate the product indicator approach (but example code is also included for the other two methods).

fit_sem_mod_pi <- modsem(model = big_sem3, 
                      data = kids, 
                      missing = "fiml",
                      method = "dblcent")

# verbose = TRUE print model estimation progress in the console
# fit_sem_mod_lms <- modsem(model = big_sem3, 
#                      data = kids, 
#                      method = "lms", verbose = TRUE)
# fit_sem_mod_qml <- modsem(model = big_sem3, 
#                      data = kids, 
#                      method = "qml", verbose = TRUE)

Parameter Estimate Interpretation

With the product indicator approach, the modsem package helps compute all the product terms and write all of the lavaan model syntax. The output of this model is very extensive (lots of loadings, lots of residual variances, indicator intercepts, and a bunch of residual covariances which need to be fixed to 0). We will check that all factor loadings are significant and then focus on the regression estimates:

summary(fit_sem_mod_pi, std = T)
modsem (version 1.0.5, approach = dblcent):
lavaan 0.6-19 ended normally after 593 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       457

  Number of observations                           441
  Number of missing patterns                        13

Model Test User Model:
                                                      
  Test statistic                              4555.221
  Degrees of freedom                              1433
  P-value (Chi-square)                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Latent Variables:
                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  readprob =~                                                               
    cldq_1                1.000                               0.780    0.713
    cldq_2                0.774    0.051   15.278    0.000    0.603    0.750
    cldq_4                1.280    0.070   18.225    0.000    0.998    0.903
    cldq_5                1.295    0.078   16.622    0.000    1.009    0.850
    cldq_6                1.367    0.078   17.506    0.000    1.066    0.893
  attention =~                                                              
    swan_1                1.000                               1.251    0.846
    swan_2                0.939    0.036   26.302    0.000    1.175    0.847
    swan_3                0.830    0.044   18.766    0.000    1.039    0.764
    swan_4                1.091    0.044   25.033    0.000    1.365    0.907
    swan_5                1.173    0.049   24.116    0.000    1.468    0.889
    swan_6                1.030    0.046   22.217    0.000    1.289    0.848
    swan_7                1.103    0.046   24.104    0.000    1.379    0.890
    swan_8                1.018    0.049   20.969    0.000    1.273    0.821
    swan_9                1.028    0.044   23.315    0.000    1.287    0.871
  hwp =~                                                                    
    hpc_mean              1.000                               0.613    0.980
  readprobattention =~                                                      
    cldq_1swan_1          1.000                               0.897    0.534
    cldq_2swan_1          0.961    0.085   11.357    0.000    0.862    0.656
    cldq_4swan_1          1.537    0.121   12.738    0.000    1.378    0.791
    cldq_5swan_1          1.776    0.144   12.355    0.000    1.592    0.791
    cldq_6swan_1          1.883    0.147   12.819    0.000    1.688    0.830
    cldq_1swan_2          0.999    0.068   14.589    0.000    0.895    0.542
    cldq_2swan_2          0.919    0.093    9.887    0.000    0.824    0.659
    cldq_4swan_2          1.428    0.132   10.787    0.000    1.281    0.764
    cldq_5swan_2          1.717    0.158   10.880    0.000    1.539    0.797
    cldq_6swan_2          1.806    0.163   11.105    0.000    1.619    0.828
    cldq_1swan_3          0.836    0.075   11.132    0.000    0.750    0.470
    cldq_2swan_3          0.678    0.085    7.976    0.000    0.608    0.484
    cldq_4swan_3          1.186    0.125    9.504    0.000    1.063    0.621
    cldq_5swan_3          1.357    0.142    9.531    0.000    1.217    0.633
    cldq_6swan_3          1.432    0.146    9.831    0.000    1.284    0.666
    cldq_1swan_4          1.115    0.074   15.061    0.000    0.999    0.582
    cldq_2swan_4          0.976    0.100    9.721    0.000    0.875    0.644
    cldq_4swan_4          1.557    0.142   10.952    0.000    1.396    0.797
    cldq_5swan_4          1.786    0.165   10.853    0.000    1.601    0.806
    cldq_6swan_4          1.874    0.169   11.094    0.000    1.680    0.836
    cldq_1swan_5          1.200    0.081   14.857    0.000    1.076    0.552
    cldq_2swan_5          1.146    0.118    9.692    0.000    1.028    0.653
    cldq_4swan_5          1.734    0.159   10.908    0.000    1.554    0.794
    cldq_5swan_5          2.032    0.190   10.723    0.000    1.822    0.788
    cldq_6swan_5          2.146    0.193   11.094    0.000    1.924    0.841
    cldq_1swan_6          1.163    0.082   14.100    0.000    1.042    0.560
    cldq_2swan_6          1.182    0.117   10.097    0.000    1.059    0.694
    cldq_4swan_6          1.708    0.157   10.909    0.000    1.531    0.797
    cldq_5swan_6          1.968    0.183   10.751    0.000    1.765    0.796
    cldq_6swan_6          2.076    0.187   11.095    0.000    1.862    0.842
    cldq_1swan_7          1.092    0.078   13.929    0.000    0.979    0.531
    cldq_2swan_7          1.089    0.115    9.472    0.000    0.976    0.631
    cldq_4swan_7          1.605    0.148   10.825    0.000    1.439    0.784
    cldq_5swan_7          1.876    0.174   10.778    0.000    1.682    0.803
    cldq_6swan_7          2.009    0.183   10.960    0.000    1.801    0.830
    cldq_1swan_8          1.106    0.086   12.928    0.000    0.992    0.519
    cldq_2swan_8          1.117    0.119    9.412    0.000    1.001    0.617
    cldq_4swan_8          1.634    0.156   10.505    0.000    1.465    0.734
    cldq_5swan_8          1.898    0.178   10.649    0.000    1.702    0.773
    cldq_6swan_8          2.027    0.186   10.877    0.000    1.817    0.805
    cldq_1swan_9          1.072    0.079   13.593    0.000    0.961    0.529
    cldq_2swan_9          1.023    0.104    9.842    0.000    0.917    0.660
    cldq_4swan_9          1.569    0.147   10.708    0.000    1.407    0.767
    cldq_5swan_9          1.799    0.170   10.604    0.000    1.613    0.774
    cldq_6swan_9          1.882    0.172   10.955    0.000    1.687    0.822

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  hwp ~                                                                 
    readprob          0.108    0.037    2.913    0.004    0.137    0.137
    attention        -0.309    0.021  -14.716    0.000   -0.630   -0.630
    readprobattntn   -0.139    0.031   -4.430    0.000   -0.203   -0.203

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .swan_1 ~~                                                             
   .swan_2            0.169    0.035    4.829    0.000    0.169    0.290
 .cldq_5 ~~                                                             
   .cldq_6            0.087    0.028    3.118    0.002    0.087    0.260
 .cldq_1swan_1 ~~                                                       
   .cldq_2swan_2      0.000                               0.000    0.000
   .cldq_2swan_3      0.000                               0.000    0.000
   .cldq_2swan_4      0.000                               0.000    0.000
   .cldq_2swan_5      0.000                               0.000    0.000
   .cldq_2swan_6      0.000                               0.000    0.000
   .cldq_2swan_7      0.000                               0.000    0.000
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
   .cldq_4swan_2      0.000                               0.000    0.000
   .cldq_4swan_3      0.000                               0.000    0.000
   .cldq_4swan_4      0.000                               0.000    0.000
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
   .cldq_5swan_2      0.000                               0.000    0.000
   .cldq_5swan_3      0.000                               0.000    0.000
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
   .cldq_6swan_2      0.000                               0.000    0.000
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_2      0.000                               0.000    0.000
 .cldq_1swan_2 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
   .cldq_2swan_4      0.000                               0.000    0.000
   .cldq_2swan_5      0.000                               0.000    0.000
   .cldq_2swan_6      0.000                               0.000    0.000
   .cldq_2swan_7      0.000                               0.000    0.000
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_2      0.000                               0.000    0.000
 .cldq_1swan_2 ~~                                                       
   .cldq_4swan_3      0.000                               0.000    0.000
   .cldq_4swan_4      0.000                               0.000    0.000
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_2      0.000                               0.000    0.000
 .cldq_1swan_2 ~~                                                       
   .cldq_5swan_3      0.000                               0.000    0.000
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_2      0.000                               0.000    0.000
 .cldq_1swan_2 ~~                                                       
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_1swan_3 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
   .cldq_2swan_5      0.000                               0.000    0.000
   .cldq_2swan_6      0.000                               0.000    0.000
   .cldq_2swan_7      0.000                               0.000    0.000
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_1swan_3 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_1swan_3 ~~                                                       
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_3      0.000                               0.000    0.000
 .cldq_1swan_3 ~~                                                       
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_1swan_4 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
   .cldq_2swan_6      0.000                               0.000    0.000
   .cldq_2swan_7      0.000                               0.000    0.000
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_1swan_4 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_1swan_4 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_1swan_4      0.000                               0.000    0.000
 .cldq_1swan_4 ~~                                                       
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_1swan_5 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
   .cldq_2swan_7      0.000                               0.000    0.000
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_1swan_5 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_1swan_5 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_1swan_5      0.000                               0.000    0.000
 .cldq_1swan_5 ~~                                                       
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_1swan_6 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_1swan_6 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_1swan_6 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_1swan_6      0.000                               0.000    0.000
 .cldq_1swan_6 ~~                                                       
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_2swan_6 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_1swan_7 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_1swan_7 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_1swan_7 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_1swan_7      0.000                               0.000    0.000
 .cldq_1swan_7 ~~                                                       
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_2swan_6 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_2swan_7 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_1swan_8 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_4swan_7 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_1swan_8 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_1swan_8 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_1swan_8      0.000                               0.000    0.000
 .cldq_1swan_8 ~~                                                       
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_6 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_7 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_8 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_7 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_4swan_8 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_5swan_8 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_6swan_8 ~~                                                       
   .cldq_1swan_9      0.000                               0.000    0.000
 .cldq_2swan_1 ~~                                                       
   .cldq_4swan_2      0.000                               0.000    0.000
   .cldq_4swan_3      0.000                               0.000    0.000
   .cldq_4swan_4      0.000                               0.000    0.000
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
   .cldq_5swan_2      0.000                               0.000    0.000
   .cldq_5swan_3      0.000                               0.000    0.000
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
   .cldq_6swan_2      0.000                               0.000    0.000
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_2      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_4swan_3      0.000                               0.000    0.000
   .cldq_4swan_4      0.000                               0.000    0.000
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_2      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_5swan_3      0.000                               0.000    0.000
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_2      0.000                               0.000    0.000
 .cldq_2swan_2 ~~                                                       
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_3      0.000                               0.000    0.000
 .cldq_2swan_3 ~~                                                       
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_2swan_4      0.000                               0.000    0.000
 .cldq_2swan_4 ~~                                                       
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_2swan_5      0.000                               0.000    0.000
 .cldq_2swan_5 ~~                                                       
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_2swan_6 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_2swan_6 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_2swan_6      0.000                               0.000    0.000
 .cldq_2swan_6 ~~                                                       
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_2swan_7 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_2swan_7 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_2swan_7      0.000                               0.000    0.000
 .cldq_2swan_7 ~~                                                       
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_4swan_7 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_2swan_8 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_2swan_8 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_2swan_8      0.000                               0.000    0.000
 .cldq_2swan_8 ~~                                                       
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_7 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_8 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_5swan_8 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_6swan_8 ~~                                                       
   .cldq_2swan_9      0.000                               0.000    0.000
 .cldq_4swan_1 ~~                                                       
   .cldq_5swan_2      0.000                               0.000    0.000
   .cldq_5swan_3      0.000                               0.000    0.000
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
   .cldq_6swan_2      0.000                               0.000    0.000
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_2      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_5swan_3      0.000                               0.000    0.000
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_2      0.000                               0.000    0.000
 .cldq_4swan_2 ~~                                                       
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_3      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_3      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_5swan_4      0.000                               0.000    0.000
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_3      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_3      0.000                               0.000    0.000
 .cldq_4swan_3 ~~                                                       
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_4swan_4      0.000                               0.000    0.000
 .cldq_4swan_4 ~~                                                       
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_4swan_5      0.000                               0.000    0.000
 .cldq_4swan_5 ~~                                                       
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_4swan_6      0.000                               0.000    0.000
 .cldq_4swan_6 ~~                                                       
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_4swan_7 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_4swan_7      0.000                               0.000    0.000
 .cldq_4swan_7 ~~                                                       
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_4swan_8 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_4swan_8      0.000                               0.000    0.000
 .cldq_4swan_8 ~~                                                       
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_8 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_6swan_8 ~~                                                       
   .cldq_4swan_9      0.000                               0.000    0.000
 .cldq_5swan_1 ~~                                                       
   .cldq_6swan_2      0.000                               0.000    0.000
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_2      0.000                               0.000    0.000
 .cldq_5swan_2 ~~                                                       
   .cldq_6swan_3      0.000                               0.000    0.000
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_3      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_3      0.000                               0.000    0.000
 .cldq_5swan_3 ~~                                                       
   .cldq_6swan_4      0.000                               0.000    0.000
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_4      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_4      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_5swan_4      0.000                               0.000    0.000
 .cldq_5swan_4 ~~                                                       
   .cldq_6swan_5      0.000                               0.000    0.000
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_5swan_5      0.000                               0.000    0.000
 .cldq_5swan_5 ~~                                                       
   .cldq_6swan_6      0.000                               0.000    0.000
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_5swan_6      0.000                               0.000    0.000
 .cldq_5swan_6 ~~                                                       
   .cldq_6swan_7      0.000                               0.000    0.000
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_5swan_7      0.000                               0.000    0.000
 .cldq_5swan_7 ~~                                                       
   .cldq_6swan_8      0.000                               0.000    0.000
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_5swan_8      0.000                               0.000    0.000
 .cldq_5swan_8 ~~                                                       
   .cldq_6swan_9      0.000                               0.000    0.000
 .cldq_6swan_1 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_2 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_3 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_4 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_5 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_6 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_7 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_6swan_8 ~~                                                       
   .cldq_5swan_9      0.000                               0.000    0.000
 .cldq_1swan_1 ~~                                                       
   .cldq_1swan_2      1.270    0.105   12.063    0.000    1.270    0.644
   .cldq_1swan_3      1.031    0.090   11.522    0.000    1.031    0.516
   .cldq_1swan_4      1.288    0.110   11.758    0.000    1.288    0.650
   .cldq_1swan_5      1.538    0.129   11.914    0.000    1.538    0.667
   .cldq_1swan_6      1.354    0.115   11.791    0.000    1.354    0.619
   .cldq_1swan_7      1.418    0.121   11.769    0.000    1.418    0.639
   .cldq_1swan_8      1.361    0.120   11.379    0.000    1.361    0.587
   .cldq_1swan_9      1.353    0.116   11.678    0.000    1.353    0.617
   .cldq_2swan_1      0.371    0.041    9.126    0.000    0.371    0.264
   .cldq_4swan_1      0.506    0.053    9.592    0.000    0.506    0.334
   .cldq_5swan_1      0.531    0.057    9.337    0.000    0.531    0.304
   .cldq_6swan_1      0.577    0.058    9.862    0.000    0.577    0.358
 .cldq_1swan_2 ~~                                                       
   .cldq_1swan_3      1.045    0.090   11.648    0.000    1.045    0.535
   .cldq_1swan_4      1.277    0.108   11.840    0.000    1.277    0.659
   .cldq_1swan_5      1.447    0.124   11.666    0.000    1.447    0.641
   .cldq_1swan_6      1.362    0.114   11.953    0.000    1.362    0.636
   .cldq_1swan_7      1.321    0.115   11.440    0.000    1.321    0.608
   .cldq_1swan_8      1.382    0.118   11.665    0.000    1.382    0.608
   .cldq_1swan_9      1.382    0.115   12.006    0.000    1.382    0.644
   .cldq_2swan_2      0.296    0.034    8.721    0.000    0.296    0.227
   .cldq_4swan_2      0.532    0.052   10.178    0.000    0.532    0.355
   .cldq_5swan_2      0.545    0.057    9.581    0.000    0.545    0.336
   .cldq_6swan_2      0.596    0.060    9.980    0.000    0.596    0.391
 .cldq_1swan_3 ~~                                                       
   .cldq_1swan_4      1.131    0.095   11.918    0.000    1.131    0.576
   .cldq_1swan_5      1.094    0.104   10.542    0.000    1.094    0.478
   .cldq_1swan_6      1.073    0.096   11.186    0.000    1.073    0.494
   .cldq_1swan_7      1.065    0.099   10.792    0.000    1.065    0.484
   .cldq_1swan_8      1.046    0.099   10.577    0.000    1.046    0.455
   .cldq_1swan_9      1.077    0.097   11.122    0.000    1.077    0.495
   .cldq_2swan_3      0.688    0.063   10.997    0.000    0.688    0.445
   .cldq_4swan_3      1.057    0.088   11.947    0.000    1.057    0.559
   .cldq_5swan_3      1.038    0.092   11.286    0.000    1.038    0.495
   .cldq_6swan_3      1.090    0.096   11.372    0.000    1.090    0.538
 .cldq_1swan_4 ~~                                                       
   .cldq_1swan_5      1.668    0.137   12.153    0.000    1.668    0.736
   .cldq_1swan_6      1.479    0.122   12.124    0.000    1.479    0.688
   .cldq_1swan_7      1.500    0.127   11.820    0.000    1.500    0.688
   .cldq_1swan_8      1.412    0.125   11.337    0.000    1.412    0.619
   .cldq_1swan_9      1.445    0.123   11.784    0.000    1.445    0.671
   .cldq_2swan_4      0.228    0.026    8.628    0.000    0.228    0.157
   .cldq_4swan_4      0.361    0.039    9.198    0.000    0.361    0.244
   .cldq_5swan_4      0.372    0.040    9.235    0.000    0.372    0.227
   .cldq_6swan_4      0.312    0.039    7.967    0.000    0.312    0.203
 .cldq_1swan_5 ~~                                                       
   .cldq_1swan_6      1.671    0.141   11.889    0.000    1.671    0.667
   .cldq_1swan_7      1.975    0.156   12.662    0.000    1.975    0.777
   .cldq_1swan_8      1.722    0.149   11.581    0.000    1.722    0.648
   .cldq_1swan_9      1.690    0.142   11.876    0.000    1.690    0.673
   .cldq_2swan_5      0.198    0.032    6.127    0.000    0.198    0.102
   .cldq_4swan_5      0.489    0.050    9.809    0.000    0.489    0.253
   .cldq_5swan_5      0.480    0.053    9.015    0.000    0.480    0.208
   .cldq_6swan_5      0.484    0.052    9.336    0.000    0.484    0.241
 .cldq_1swan_6 ~~                                                       
   .cldq_1swan_7      1.587    0.134   11.883    0.000    1.587    0.658
   .cldq_1swan_8      1.566    0.133   11.758    0.000    1.566    0.622
   .cldq_1swan_9      1.546    0.129   12.002    0.000    1.546    0.649
   .cldq_2swan_6      0.305    0.036    8.417    0.000    0.305    0.180
   .cldq_4swan_6      0.623    0.059   10.537    0.000    0.623    0.349
   .cldq_5swan_6      0.588    0.062    9.541    0.000    0.588    0.284
   .cldq_6swan_6      0.612    0.061    9.983    0.000    0.612    0.333
 .cldq_1swan_7 ~~                                                       
   .cldq_1swan_8      1.665    0.142   11.700    0.000    1.665    0.651
   .cldq_1swan_9      1.671    0.137   12.195    0.000    1.671    0.692
   .cldq_2swan_7      0.415    0.042    9.829    0.000    0.415    0.221
   .cldq_4swan_7      0.466    0.047    9.960    0.000    0.466    0.262
   .cldq_5swan_7      0.448    0.047    9.486    0.000    0.448    0.229
   .cldq_6swan_7      0.478    0.050    9.655    0.000    0.478    0.252
 .cldq_1swan_8 ~~                                                       
   .cldq_1swan_9      1.662    0.137   12.117    0.000    1.662    0.658
   .cldq_2swan_8      0.592    0.059   10.040    0.000    0.592    0.284
   .cldq_4swan_8      0.794    0.075   10.628    0.000    0.794    0.358
   .cldq_5swan_8      0.734    0.075    9.750    0.000    0.734    0.321
   .cldq_6swan_8      0.796    0.077   10.361    0.000    0.796    0.364
 .cldq_1swan_9 ~~                                                       
   .cldq_2swan_9      0.381    0.038   10.127    0.000    0.381    0.237
   .cldq_4swan_9      0.616    0.058   10.548    0.000    0.616    0.339
   .cldq_5swan_9      0.611    0.061    9.989    0.000    0.611    0.299
   .cldq_6swan_9      0.563    0.058    9.694    0.000    0.563    0.311
 .cldq_2swan_1 ~~                                                       
   .cldq_2swan_2      0.537    0.049   10.883    0.000    0.537    0.577
   .cldq_2swan_3      0.445    0.046    9.655    0.000    0.445    0.409
   .cldq_2swan_4      0.640    0.057   11.301    0.000    0.640    0.622
   .cldq_2swan_5      0.680    0.066   10.268    0.000    0.680    0.576
   .cldq_2swan_6      0.638    0.060   10.558    0.000    0.638    0.586
   .cldq_2swan_7      0.593    0.061    9.665    0.000    0.593    0.499
   .cldq_2swan_8      0.626    0.061   10.178    0.000    0.626    0.495
   .cldq_2swan_9      0.595    0.054   10.942    0.000    0.595    0.576
   .cldq_4swan_1      0.368    0.041    9.047    0.000    0.368    0.349
   .cldq_5swan_1      0.368    0.044    8.365    0.000    0.368    0.302
   .cldq_6swan_1      0.426    0.045    9.379    0.000    0.426    0.379
 .cldq_2swan_2 ~~                                                       
   .cldq_2swan_3      0.532    0.047   11.199    0.000    0.532    0.514
   .cldq_2swan_4      0.635    0.055   11.490    0.000    0.635    0.650
   .cldq_2swan_5      0.627    0.063   10.008    0.000    0.627    0.559
   .cldq_2swan_6      0.668    0.060   11.129    0.000    0.668    0.645
   .cldq_2swan_7      0.520    0.058    9.032    0.000    0.520    0.460
   .cldq_2swan_8      0.586    0.059   10.015    0.000    0.586    0.487
   .cldq_2swan_9      0.557    0.052   10.697    0.000    0.557    0.567
   .cldq_4swan_2      0.365    0.036   10.091    0.000    0.365    0.359
   .cldq_5swan_2      0.366    0.039    9.290    0.000    0.366    0.333
   .cldq_6swan_2      0.400    0.041    9.707    0.000    0.400    0.388
 .cldq_2swan_3 ~~                                                       
   .cldq_2swan_4      0.516    0.051   10.016    0.000    0.516    0.452
   .cldq_2swan_5      0.397    0.058    6.867    0.000    0.397    0.304
   .cldq_2swan_6      0.467    0.054    8.650    0.000    0.467    0.387
   .cldq_2swan_7      0.376    0.055    6.842    0.000    0.376    0.285
   .cldq_2swan_8      0.465    0.055    8.421    0.000    0.465    0.331
   .cldq_2swan_9      0.471    0.049    9.538    0.000    0.471    0.412
   .cldq_4swan_3      0.803    0.072   11.126    0.000    0.803    0.544
   .cldq_5swan_3      0.814    0.075   10.823    0.000    0.814    0.498
   .cldq_6swan_3      0.895    0.080   11.140    0.000    0.895    0.566
 .cldq_2swan_4 ~~                                                       
   .cldq_2swan_5      0.901    0.078   11.614    0.000    0.901    0.728
   .cldq_2swan_6      0.819    0.070   11.669    0.000    0.819    0.718
   .cldq_2swan_7      0.749    0.071   10.555    0.000    0.749    0.601
   .cldq_2swan_8      0.799    0.071   11.214    0.000    0.799    0.603
   .cldq_2swan_9      0.754    0.063   11.906    0.000    0.754    0.697
   .cldq_4swan_4      0.309    0.030   10.291    0.000    0.309    0.281
   .cldq_5swan_4      0.315    0.031   10.184    0.000    0.315    0.258
   .cldq_6swan_4      0.302    0.031    9.712    0.000    0.302    0.264
 .cldq_2swan_5 ~~                                                       
   .cldq_2swan_6      0.976    0.085   11.466    0.000    0.976    0.745
   .cldq_2swan_7      0.998    0.091   11.027    0.000    0.998    0.697
   .cldq_2swan_8      0.987    0.088   11.203    0.000    0.987    0.649
   .cldq_2swan_9      0.843    0.075   11.276    0.000    0.843    0.678
   .cldq_4swan_5      0.288    0.036    8.049    0.000    0.288    0.203
   .cldq_5swan_5      0.265    0.038    6.945    0.000    0.265    0.156
   .cldq_6swan_5      0.312    0.039    7.979    0.000    0.312    0.211
 .cldq_2swan_6 ~~                                                       
   .cldq_2swan_7      0.839    0.079   10.646    0.000    0.839    0.635
   .cldq_2swan_8      0.869    0.078   11.092    0.000    0.869    0.619
   .cldq_2swan_9      0.776    0.068   11.336    0.000    0.776    0.677
   .cldq_4swan_6      0.309    0.037    8.470    0.000    0.309    0.243
   .cldq_5swan_6      0.260    0.038    6.930    0.000    0.260    0.176
   .cldq_6swan_6      0.365    0.039    9.376    0.000    0.365    0.278
 .cldq_2swan_7 ~~                                                       
   .cldq_2swan_8      0.951    0.086   11.116    0.000    0.951    0.620
   .cldq_2swan_9      0.779    0.071   10.943    0.000    0.779    0.623
   .cldq_4swan_7      0.359    0.041    8.708    0.000    0.359    0.263
   .cldq_5swan_7      0.342    0.041    8.293    0.000    0.342    0.228
   .cldq_6swan_7      0.360    0.044    8.201    0.000    0.360    0.247
 .cldq_2swan_8 ~~                                                       
   .cldq_2swan_9      0.797    0.070   11.320    0.000    0.797    0.599
   .cldq_4swan_8      0.752    0.065   11.584    0.000    0.752    0.435
   .cldq_5swan_8      0.717    0.066   10.852    0.000    0.717    0.402
   .cldq_6swan_8      0.722    0.066   10.973    0.000    0.722    0.422
 .cldq_2swan_9 ~~                                                       
   .cldq_4swan_9      0.430    0.041   10.568    0.000    0.430    0.350
   .cldq_5swan_9      0.420    0.042    9.924    0.000    0.420    0.305
   .cldq_6swan_9      0.441    0.042   10.516    0.000    0.441    0.361
 .cldq_4swan_1 ~~                                                       
   .cldq_4swan_2      0.413    0.043    9.635    0.000    0.413    0.358
   .cldq_4swan_3      0.354    0.041    8.539    0.000    0.354    0.247
   .cldq_4swan_4      0.436    0.051    8.492    0.000    0.436    0.387
   .cldq_4swan_5      0.491    0.058    8.531    0.000    0.491    0.387
   .cldq_4swan_6      0.417    0.052    8.062    0.000    0.417    0.338
   .cldq_4swan_7      0.422    0.054    7.873    0.000    0.422    0.348
   .cldq_4swan_8      0.459    0.055    8.366    0.000    0.459    0.318
   .cldq_4swan_9      0.410    0.049    8.420    0.000    0.410    0.327
   .cldq_5swan_1      0.750    0.064   11.630    0.000    0.750    0.571
   .cldq_6swan_1      0.718    0.064   11.271    0.000    0.718    0.593
 .cldq_4swan_2 ~~                                                       
   .cldq_4swan_3      0.392    0.040    9.754    0.000    0.392    0.270
   .cldq_4swan_4      0.461    0.049    9.484    0.000    0.461    0.403
   .cldq_4swan_5      0.430    0.051    8.426    0.000    0.430    0.335
   .cldq_4swan_6      0.439    0.049    9.038    0.000    0.439    0.350
   .cldq_4swan_7      0.407    0.049    8.314    0.000    0.407    0.331
   .cldq_4swan_8      0.431    0.050    8.579    0.000    0.431    0.294
   .cldq_4swan_9      0.414    0.046    9.062    0.000    0.414    0.325
   .cldq_5swan_2      0.756    0.066   11.424    0.000    0.756    0.599
   .cldq_6swan_2      0.778    0.067   11.603    0.000    0.778    0.656
 .cldq_4swan_3 ~~                                                       
   .cldq_4swan_4      0.388    0.047    8.273    0.000    0.388    0.273
   .cldq_4swan_5      0.344    0.049    7.004    0.000    0.344    0.215
   .cldq_4swan_6      0.360    0.047    7.728    0.000    0.360    0.231
   .cldq_4swan_7      0.316    0.047    6.737    0.000    0.316    0.206
   .cldq_4swan_8      0.350    0.048    7.276    0.000    0.350    0.192
   .cldq_4swan_9      0.328    0.044    7.514    0.000    0.328    0.207
   .cldq_5swan_3      1.477    0.116   12.736    0.000    1.477    0.738
   .cldq_6swan_3      1.424    0.116   12.273    0.000    1.424    0.736
 .cldq_4swan_4 ~~                                                       
   .cldq_4swan_5      0.591    0.068    8.682    0.000    0.591    0.470
   .cldq_4swan_6      0.542    0.062    8.780    0.000    0.542    0.442
   .cldq_4swan_7      0.562    0.065    8.685    0.000    0.562    0.466
   .cldq_4swan_8      0.577    0.065    8.861    0.000    0.577    0.403
   .cldq_4swan_9      0.542    0.059    9.161    0.000    0.542    0.435
   .cldq_5swan_4      0.509    0.047   10.840    0.000    0.509    0.409
   .cldq_6swan_4      0.504    0.047   10.708    0.000    0.504    0.433
 .cldq_4swan_5 ~~                                                       
   .cldq_4swan_6      0.588    0.068    8.594    0.000    0.588    0.426
   .cldq_4swan_7      0.641    0.075    8.543    0.000    0.641    0.473
   .cldq_4swan_8      0.731    0.077    9.496    0.000    0.731    0.453
   .cldq_4swan_9      0.517    0.063    8.163    0.000    0.517    0.369
   .cldq_5swan_5      0.671    0.063   10.732    0.000    0.671    0.397
   .cldq_6swan_5      0.666    0.061   10.946    0.000    0.666    0.452
 .cldq_4swan_6 ~~                                                       
   .cldq_4swan_7      0.610    0.068    8.999    0.000    0.610    0.462
   .cldq_4swan_8      0.636    0.068    9.313    0.000    0.636    0.405
   .cldq_4swan_9      0.520    0.060    8.741    0.000    0.520    0.381
   .cldq_5swan_6      0.731    0.066   11.126    0.000    0.731    0.469
   .cldq_6swan_6      0.672    0.063   10.741    0.000    0.672    0.486
 .cldq_4swan_7 ~~                                                       
   .cldq_4swan_8      0.714    0.074    9.586    0.000    0.714    0.463
   .cldq_4swan_9      0.530    0.062    8.481    0.000    0.530    0.395
   .cldq_5swan_7      0.564    0.053   10.701    0.000    0.564    0.397
   .cldq_6swan_7      0.590    0.055   10.786    0.000    0.590    0.428
 .cldq_4swan_8 ~~                                                       
   .cldq_4swan_9      0.532    0.062    8.523    0.000    0.532    0.333
   .cldq_5swan_8      1.025    0.086   11.904    0.000    1.025    0.541
   .cldq_6swan_8      1.025    0.086   11.880    0.000    1.025    0.565
 .cldq_4swan_9 ~~                                                       
   .cldq_5swan_9      0.857    0.072   11.947    0.000    0.857    0.551
   .cldq_6swan_9      0.810    0.069   11.819    0.000    0.810    0.587
 .cldq_5swan_1 ~~                                                       
   .cldq_5swan_2      0.459    0.051    8.988    0.000    0.459    0.319
   .cldq_5swan_3      0.536    0.054    9.876    0.000    0.536    0.292
   .cldq_5swan_4      0.661    0.067    9.841    0.000    0.661    0.456
   .cldq_5swan_5      0.759    0.080    9.513    0.000    0.759    0.434
   .cldq_5swan_6      0.700    0.072    9.778    0.000    0.700    0.423
   .cldq_5swan_7      0.683    0.071    9.615    0.000    0.683    0.444
   .cldq_5swan_8      0.619    0.066    9.423    0.000    0.619    0.360
   .cldq_5swan_9      0.616    0.063    9.799    0.000    0.616    0.379
   .cldq_6swan_1      0.808    0.071   11.417    0.000    0.808    0.578
 .cldq_5swan_2 ~~                                                       
   .cldq_5swan_3      0.424    0.047    8.992    0.000    0.424    0.244
   .cldq_5swan_4      0.445    0.055    8.068    0.000    0.445    0.324
   .cldq_5swan_5      0.372    0.062    6.023    0.000    0.372    0.224
   .cldq_5swan_6      0.429    0.058    7.448    0.000    0.429    0.273
   .cldq_5swan_7      0.414    0.057    7.259    0.000    0.414    0.284
   .cldq_5swan_8      0.512    0.057    8.957    0.000    0.512    0.314
   .cldq_5swan_9      0.510    0.054    9.405    0.000    0.510    0.331
   .cldq_6swan_2      0.856    0.076   11.267    0.000    0.856    0.669
 .cldq_5swan_3 ~~                                                       
   .cldq_5swan_4      0.574    0.060    9.616    0.000    0.574    0.328
   .cldq_5swan_5      0.604    0.068    8.843    0.000    0.604    0.285
   .cldq_5swan_6      0.548    0.062    8.797    0.000    0.548    0.274
   .cldq_5swan_7      0.524    0.061    8.601    0.000    0.524    0.282
   .cldq_5swan_8      0.456    0.057    8.056    0.000    0.456    0.219
   .cldq_5swan_9      0.570    0.057   10.023    0.000    0.570    0.290
   .cldq_6swan_3      1.632    0.129   12.695    0.000    1.632    0.761
 .cldq_5swan_4 ~~                                                       
   .cldq_5swan_5      0.927    0.094    9.880    0.000    0.927    0.554
   .cldq_5swan_6      0.767    0.081    9.450    0.000    0.767    0.486
   .cldq_5swan_7      0.741    0.082    9.056    0.000    0.741    0.504
   .cldq_5swan_8      0.633    0.074    8.528    0.000    0.633    0.385
   .cldq_5swan_9      0.697    0.072    9.653    0.000    0.697    0.449
   .cldq_6swan_4      0.557    0.050   11.038    0.000    0.557    0.430
 .cldq_5swan_5 ~~                                                       
   .cldq_5swan_6      0.890    0.097    9.180    0.000    0.890    0.466
   .cldq_5swan_7      0.963    0.102    9.463    0.000    0.963    0.542
   .cldq_5swan_8      0.708    0.090    7.855    0.000    0.708    0.356
   .cldq_5swan_9      0.739    0.084    8.806    0.000    0.739    0.393
   .cldq_6swan_5      0.745    0.068   10.997    0.000    0.745    0.423
 .cldq_5swan_6 ~~                                                       
   .cldq_5swan_7      0.888    0.091    9.781    0.000    0.888    0.529
   .cldq_5swan_8      0.696    0.081    8.637    0.000    0.696    0.371
   .cldq_5swan_9      0.728    0.078    9.352    0.000    0.728    0.410
   .cldq_6swan_6      0.759    0.069   10.992    0.000    0.759    0.473
 .cldq_5swan_7 ~~                                                       
   .cldq_5swan_8      0.762    0.085    8.943    0.000    0.762    0.436
   .cldq_5swan_9      0.750    0.079    9.537    0.000    0.750    0.454
   .cldq_6swan_7      0.619    0.057   10.790    0.000    0.619    0.409
 .cldq_5swan_8 ~~                                                       
   .cldq_5swan_9      0.692    0.073    9.493    0.000    0.692    0.375
   .cldq_6swan_8      1.122    0.092   12.213    0.000    1.122    0.600
 .cldq_5swan_9 ~~                                                       
   .cldq_6swan_9      0.916    0.075   12.182    0.000    0.916    0.592
 .cldq_6swan_1 ~~                                                       
   .cldq_6swan_2      0.318    0.046    6.884    0.000    0.318    0.255
   .cldq_6swan_3      0.304    0.048    6.275    0.000    0.304    0.186
   .cldq_6swan_4      0.472    0.062    7.600    0.000    0.472    0.377
   .cldq_6swan_5      0.502    0.069    7.272    0.000    0.502    0.357
   .cldq_6swan_6      0.437    0.062    7.013    0.000    0.437    0.322
   .cldq_6swan_7      0.417    0.066    6.312    0.000    0.417    0.303
   .cldq_6swan_8      0.375    0.062    6.086    0.000    0.375    0.247
   .cldq_6swan_9      0.377    0.056    6.735    0.000    0.377    0.283
 .cldq_6swan_2 ~~                                                       
   .cldq_6swan_3      0.257    0.042    6.104    0.000    0.257    0.163
   .cldq_6swan_4      0.367    0.052    7.084    0.000    0.367    0.304
   .cldq_6swan_5      0.346    0.055    6.287    0.000    0.346    0.255
   .cldq_6swan_6      0.333    0.052    6.414    0.000    0.333    0.254
   .cldq_6swan_7      0.289    0.053    5.411    0.000    0.289    0.218
   .cldq_6swan_8      0.280    0.051    5.477    0.000    0.280    0.191
   .cldq_6swan_9      0.261    0.046    5.650    0.000    0.261    0.203
 .cldq_6swan_3 ~~                                                       
   .cldq_6swan_4      0.344    0.054    6.385    0.000    0.344    0.217
   .cldq_6swan_5      0.270    0.057    4.774    0.000    0.270    0.152
   .cldq_6swan_6      0.328    0.055    6.008    0.000    0.328    0.191
   .cldq_6swan_7      0.268    0.056    4.789    0.000    0.268    0.154
   .cldq_6swan_8      0.271    0.053    5.117    0.000    0.271    0.141
   .cldq_6swan_9      0.236    0.048    4.888    0.000    0.236    0.140
 .cldq_6swan_4 ~~                                                       
   .cldq_6swan_5      0.628    0.082    7.652    0.000    0.628    0.461
   .cldq_6swan_6      0.543    0.072    7.500    0.000    0.543    0.413
   .cldq_6swan_7      0.610    0.080    7.645    0.000    0.610    0.457
   .cldq_6swan_8      0.538    0.074    7.309    0.000    0.538    0.364
   .cldq_6swan_9      0.484    0.066    7.311    0.000    0.484    0.375
 .cldq_6swan_5 ~~                                                       
   .cldq_6swan_6      0.603    0.081    7.447    0.000    0.603    0.409
   .cldq_6swan_7      0.724    0.095    7.648    0.000    0.724    0.483
   .cldq_6swan_8      0.666    0.087    7.691    0.000    0.666    0.402
   .cldq_6swan_9      0.543    0.074    7.306    0.000    0.543    0.375
 .cldq_6swan_6 ~~                                                       
   .cldq_6swan_7      0.589    0.081    7.225    0.000    0.589    0.407
   .cldq_6swan_8      0.516    0.075    6.918    0.000    0.516    0.323
   .cldq_6swan_9      0.520    0.069    7.566    0.000    0.520    0.372
 .cldq_6swan_7 ~~                                                       
   .cldq_6swan_8      0.687    0.087    7.893    0.000    0.687    0.423
   .cldq_6swan_9      0.542    0.075    7.274    0.000    0.542    0.382
 .cldq_6swan_8 ~~                                                       
   .cldq_6swan_9      0.449    0.068    6.614    0.000    0.449    0.286
  readprob ~~                                                           
    attention        -0.442    0.060   -7.371    0.000   -0.454   -0.454
    readprobattntn   -0.378    0.054   -6.975    0.000   -0.541   -0.541
  attention ~~                                                          
    readprobattntn    0.214    0.062    3.431    0.001    0.191    0.191

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .cldq_1            1.988    0.052   38.131    0.000    1.988    1.817
   .cldq_2            1.327    0.038   34.654    0.000    1.327    1.650
   .cldq_4            1.646    0.053   31.277    0.000    1.646    1.489
   .cldq_5            1.662    0.057   29.407    0.000    1.662    1.401
   .cldq_6            1.662    0.057   29.235    0.000    1.662    1.392
   .swan_1            4.543    0.073   62.258    0.000    4.543    3.074
   .swan_2            4.722    0.069   68.838    0.000    4.722    3.403
   .swan_3            4.840    0.067   71.835    0.000    4.840    3.561
   .swan_4            4.626    0.074   62.469    0.000    4.626    3.075
   .swan_5            4.430    0.081   54.472    0.000    4.430    2.682
   .swan_6            4.648    0.075   61.949    0.000    4.648    3.059
   .swan_7            4.531    0.076   59.326    0.000    4.531    2.924
   .swan_8            4.057    0.077   52.896    0.000    4.057    2.615
   .swan_9            4.543    0.073   62.421    0.000    4.543    3.077
   .hpc_mean          1.676    0.030   56.204    0.000    1.676    2.676
   .cldq_1swan_1      0.015    0.084    0.180    0.857    0.015    0.009
   .cldq_2swan_1      0.013    0.066    0.191    0.849    0.013    0.010
   .cldq_4swan_1      0.023    0.087    0.267    0.790    0.023    0.013
   .cldq_5swan_1      0.024    0.100    0.242    0.809    0.024    0.012
   .cldq_6swan_1      0.029    0.101    0.285    0.775    0.029    0.014
   .cldq_1swan_2      0.022    0.083    0.269    0.788    0.022    0.013
   .cldq_2swan_2      0.013    0.063    0.213    0.831    0.013    0.011
   .cldq_4swan_2      0.025    0.084    0.299    0.765    0.025    0.015
   .cldq_5swan_2      0.029    0.096    0.304    0.761    0.029    0.015
   .cldq_6swan_2      0.034    0.098    0.348    0.728    0.034    0.017
   .cldq_1swan_3      0.016    0.080    0.195    0.846    0.016    0.010
   .cldq_2swan_3      0.011    0.063    0.171    0.864    0.011    0.009
   .cldq_4swan_3      0.020    0.086    0.233    0.815    0.020    0.012
   .cldq_5swan_3      0.023    0.096    0.237    0.813    0.023    0.012
   .cldq_6swan_3      0.024    0.097    0.247    0.805    0.024    0.012
   .cldq_1swan_4      0.026    0.086    0.301    0.763    0.026    0.015
   .cldq_2swan_4      0.018    0.068    0.270    0.787    0.018    0.014
   .cldq_4swan_4      0.031    0.087    0.352    0.725    0.031    0.018
   .cldq_5swan_4      0.037    0.099    0.374    0.708    0.037    0.019
   .cldq_6swan_4      0.037    0.100    0.368    0.713    0.037    0.018
   .cldq_1swan_5      0.017    0.098    0.176    0.860    0.017    0.009
   .cldq_2swan_5      0.017    0.079    0.215    0.830    0.017    0.011
   .cldq_4swan_5      0.026    0.098    0.262    0.793    0.026    0.013
   .cldq_5swan_5      0.031    0.115    0.273    0.785    0.031    0.014
   .cldq_6swan_5      0.032    0.114    0.278    0.781    0.032    0.014
   .cldq_1swan_6      0.008    0.093    0.082    0.935    0.008    0.004
   .cldq_2swan_6      0.002    0.076    0.025    0.980    0.002    0.001
   .cldq_4swan_6      0.011    0.096    0.119    0.906    0.011    0.006
   .cldq_5swan_6      0.019    0.111    0.168    0.867    0.019    0.008
   .cldq_6swan_6      0.018    0.110    0.166    0.868    0.018    0.008
   .cldq_1swan_7      0.023    0.093    0.247    0.805    0.023    0.012
   .cldq_2swan_7      0.017    0.078    0.216    0.829    0.017    0.011
   .cldq_4swan_7      0.025    0.092    0.268    0.789    0.025    0.013
   .cldq_5swan_7      0.030    0.105    0.283    0.777    0.030    0.014
   .cldq_6swan_7      0.030    0.108    0.282    0.778    0.030    0.014
   .cldq_1swan_8      0.025    0.096    0.258    0.796    0.025    0.013
   .cldq_2swan_8      0.017    0.081    0.215    0.830    0.017    0.011
   .cldq_4swan_8      0.025    0.100    0.248    0.804    0.025    0.012
   .cldq_5swan_8      0.027    0.110    0.248    0.804    0.027    0.012
   .cldq_6swan_8      0.030    0.113    0.263    0.793    0.030    0.013
   .cldq_1swan_9      0.017    0.091    0.182    0.856    0.017    0.009
   .cldq_2swan_9      0.016    0.069    0.234    0.815    0.016    0.012
   .cldq_4swan_9      0.023    0.092    0.249    0.804    0.023    0.012
   .cldq_5swan_9      0.033    0.104    0.317    0.752    0.033    0.016
   .cldq_6swan_9      0.029    0.102    0.285    0.775    0.029    0.014

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .hpc_mean          0.016                               0.016    0.040
   .cldq_1            0.589    0.044   13.436    0.000    0.589    0.492
   .cldq_2            0.282    0.021   13.175    0.000    0.282    0.437
   .cldq_4            0.226    0.025    8.870    0.000    0.226    0.185
   .cldq_5            0.390    0.037   10.557    0.000    0.390    0.277
   .cldq_6            0.290    0.033    8.906    0.000    0.290    0.203
   .swan_1            0.619    0.049   12.555    0.000    0.619    0.284
   .swan_2            0.546    0.044   12.495    0.000    0.546    0.283
   .swan_3            0.768    0.058   13.210    0.000    0.768    0.416
   .swan_4            0.400    0.035   11.432    0.000    0.400    0.177
   .swan_5            0.574    0.048   11.956    0.000    0.574    0.211
   .swan_6            0.648    0.051   12.620    0.000    0.648    0.281
   .swan_7            0.500    0.042   11.881    0.000    0.500    0.208
   .swan_8            0.785    0.061   12.880    0.000    0.785    0.326
   .swan_9            0.525    0.043   12.316    0.000    0.525    0.241
   .cldq_1swan_1      2.014    0.132   15.263    0.000    2.014    0.715
   .cldq_2swan_1      0.980    0.068   14.426    0.000    0.980    0.569
   .cldq_4swan_1      1.136    0.077   14.763    0.000    1.136    0.374
   .cldq_5swan_1      1.517    0.098   15.416    0.000    1.517    0.374
   .cldq_6swan_1      1.289    0.095   13.629    0.000    1.289    0.311
   .cldq_1swan_2      1.930    0.124   15.559    0.000    1.930    0.707
   .cldq_2swan_2      0.886    0.059   14.932    0.000    0.886    0.566
   .cldq_4swan_2      1.168    0.076   15.445    0.000    1.168    0.416
   .cldq_5swan_2      1.362    0.093   14.680    0.000    1.362    0.365
   .cldq_6swan_2      1.202    0.090   13.317    0.000    1.202    0.314
   .cldq_1swan_3      1.981    0.119   16.670    0.000    1.981    0.779
   .cldq_2swan_3      1.207    0.076   15.790    0.000    1.207    0.765
   .cldq_4swan_3      1.806    0.118   15.265    0.000    1.806    0.615
   .cldq_5swan_3      2.217    0.142   15.663    0.000    2.217    0.600
   .cldq_6swan_3      2.073    0.145   14.335    0.000    2.073    0.557
   .cldq_1swan_4      1.947    0.131   14.915    0.000    1.947    0.661
   .cldq_2swan_4      1.077    0.073   14.762    0.000    1.077    0.585
   .cldq_4swan_4      1.119    0.078   14.278    0.000    1.119    0.365
   .cldq_5swan_4      1.383    0.096   14.378    0.000    1.383    0.350
   .cldq_6swan_4      1.215    0.093   12.999    0.000    1.215    0.301
   .cldq_1swan_5      2.642    0.177   14.904    0.000    2.642    0.695
   .cldq_2swan_5      1.420    0.103   13.803    0.000    1.420    0.574
   .cldq_4swan_5      1.416    0.103   13.814    0.000    1.416    0.370
   .cldq_5swan_5      2.022    0.141   14.296    0.000    2.022    0.379
   .cldq_6swan_5      1.530    0.119   12.872    0.000    1.530    0.292
   .cldq_1swan_6      2.376    0.152   15.624    0.000    2.376    0.686
   .cldq_2swan_6      1.209    0.086   14.107    0.000    1.209    0.519
   .cldq_4swan_6      1.345    0.093   14.478    0.000    1.345    0.364
   .cldq_5swan_6      1.805    0.122   14.813    0.000    1.805    0.367
   .cldq_6swan_6      1.424    0.109   13.066    0.000    1.424    0.291
   .cldq_1swan_7      2.445    0.161   15.198    0.000    2.445    0.718
   .cldq_2swan_7      1.443    0.098   14.697    0.000    1.443    0.602
   .cldq_4swan_7      1.297    0.094   13.817    0.000    1.297    0.385
   .cldq_5swan_7      1.562    0.112   13.955    0.000    1.562    0.356
   .cldq_6swan_7      1.467    0.114   12.928    0.000    1.467    0.311
   .cldq_1swan_8      2.673    0.172   15.501    0.000    2.673    0.731
   .cldq_2swan_8      1.631    0.103   15.828    0.000    1.631    0.619
   .cldq_4swan_8      1.836    0.118   15.528    0.000    1.836    0.461
   .cldq_5swan_8      1.953    0.128   15.226    0.000    1.953    0.403
   .cldq_6swan_8      1.792    0.125   14.304    0.000    1.792    0.352
   .cldq_1swan_9      2.385    0.153   15.618    0.000    2.385    0.721
   .cldq_2swan_9      1.086    0.071   15.228    0.000    1.086    0.564
   .cldq_4swan_9      1.388    0.092   15.053    0.000    1.388    0.412
   .cldq_5swan_9      1.747    0.110   15.892    0.000    1.747    0.402
   .cldq_6swan_9      1.372    0.099   13.845    0.000    1.372    0.325
    readprob          0.608    0.073    8.372    0.000    1.000    1.000
    attention         1.565    0.147   10.618    0.000    1.000    1.000
   .hwp               0.145    0.012   12.428    0.000    0.386    0.386
    readprobattntn    0.804    0.144    5.569    0.000    1.000    1.000

The regression estimates show that Reading Problems are positively associated with Homework Problems whereas Attentiveness is negatively associated with Homework problems. In addition, the interaction effect is significant and negative. Thus, a one-unit increase in Attentiveness reduces the association between Reading Problems and Homework Problems by about \(-0.14\). We can understand the interaction effect better by visualizing it (remember that the x-axis is mean-centered) by plotting the Johnson-Neyman regions (again, the x-axis is mean centered):

plot_jn(x = "readprob", z = "attention",  y = "hwp", model = fit_sem_mod_pi, max_z = 4)

This figure shows that the association between Reading Problems and Homework Problems is:

  • significant and positive (i.e., reporting more reading problems is associated with more homework problems) for attention levels < 0.2;
  • not significant for attention levels between 0.2 and 2.04;
  • significant and negative (i.e., reporting more reading problems is associated with fewer homework problems) for attention levels > 2.04.

These findings (which are highly exploratory and not based on any theory!) may suggest that attentiveness buffers against/compensates for the negative consequences of reading problems on homework problems.

6.10 Summary

In this R lab, you were introduced to the steps involved in specifying, estimating, evaluating, comparing and interpreting the results of a full structural equation model. In the next R Lab, you will learn all about measurement invariance testing, a method that combines CFA and multiple-group comparisons.